
Frontera Documentation
Release 0.6.0

ScrapingHub

October 21, 2016

Contents

1 Introduction 3
1.1 Frontera at a glance . 3
1.2 Run modes . 5
1.3 Quick start single process . 7
1.4 Quick start distributed mode . 8
1.5 Cluster setup guide . 9

2 Using Frontera 13
2.1 Installation Guide . 13
2.2 Frontier objects . 13
2.3 Middlewares . 16
2.4 Canonical URL Solver . 19
2.5 Backends . 20
2.6 Message bus . 25
2.7 Crawling strategy . 27
2.8 Using the Frontier with Scrapy . 28
2.9 Settings . 32

3 Advanced usage 43
3.1 What is a Crawl Frontier? . 43
3.2 Graph Manager . 44
3.3 Recording a Scrapy crawl . 51
3.4 Fine tuning of Frontera cluster . 52
3.5 DNS Service . 53

4 Developer documentation 55
4.1 Architecture overview . 55
4.2 Frontera API . 57
4.3 Using the Frontier with Requests . 62
4.4 Examples . 63
4.5 Tests . 64
4.6 Logging . 67
4.7 Testing a Frontier . 68
4.8 F.A.Q. 70
4.9 Contribution guidelines . 70
4.10 Glossary . 70

Python Module Index 73

i

ii

Frontera Documentation, Release 0.6.0

Frontera is a web crawling tool box, allowing to build crawlers of any scale and purpose.

Frontera provides crawl frontier framework by managing when and what to crawl next, and checking for crawling
goal accomplishment.

Frontera also provides replication, sharding and isolation of all crawler components to scale and distribute it.

Frontera contain components to allow creation of fully-operational web crawler with Scrapy. Even though it was
originally designed for Scrapy, it can also be used with any other crawling framework/system as the framework offers
a generic tool box.

Contents 1

http://github.com/scrapinghub/frontera
http://github.com/scrapinghub/frontera
http://scrapy.org/

Frontera Documentation, Release 0.6.0

2 Contents

CHAPTER 1

Introduction

The purpose of this chapter is to introduce you to the concepts behind Frontera so that you can get an idea of how it
works and decide if it is suited to your needs.

1.1 Frontera at a glance

Frontera is an implementation of crawl frontier, a web crawler component used for accumulating URLs/links before
downloading them from the web. Main features of Frontera are:

• Online processing oriented,

• distributed spiders and backends architecture,

• customizable crawling policy,

• easy integration with Scrapy,

• relational databases support (MySQL, PostgreSQL, sqlite, and more) with SQLAlchemy and HBase key-value
database out of the box,

• ZeroMQ and Kafka message bus implementations for distributed crawlers,

• precise crawling logic tuning with crawling emulation using fake sitemaps with the Graph Manager.

• transparent transport layer concept (message bus) and communication protocol,

• pure Python implementation.

• Python 3 support.

1.1.1 Use cases

Here are few cases, external crawl frontier can be suitable for:

• URL ordering/queueing isolation from the spider (e.g. distributed cluster of spiders, need of remote management
of ordering/queueing),

• URL (meta)data storage is needed (e.g. to demonstrate it’s contents somewhere),

• advanced URL ordering logic is needed, when it’s hard to maintain code within spider/fetcher.

3

http://www.sqlalchemy.org/
http://hbase.apache.org/
http://zeromq.org/
http://kafka.apache.org/

Frontera Documentation, Release 0.6.0

One-time crawl, few websites

For such use case probably single process mode would be the most appropriate. Frontera can offer these prioritization
models out of the box:

• FIFO,

• LIFO,

• Breadth-first (BFS),

• Depth-first (DFS),

• based on provided score, mapped from 0.0 to 1.0.

If website is big, and it’s expensive to crawl the whole website, Frontera can be suitable for pointing the crawler to the
most important documents.

Distributed load, few websites

If website needs to be crawled faster than single spider one could use distributed spiders mode. In this mode Frontera
is distributing spider processes and using one instance of backend worker. Requests are distributed using message bus
of your choice and distribution logic can be adjusted using custom partitioning. By default requests are distributed to
spiders randomly, and desired request rate can be set in spiders.

Consider also using proxy services, such as Crawlera.

Revisiting

There is a set of websites and one need to re-crawl them on timely (or other) manner. Frontera provides simple
revisiting backend, scheduling already visited documents for next visit using time interval set by option. This backend
is using general relational database for persistence and can be used in single process or distributed spiders modes.

Watchdog use case - when one needs to be notified about document changes, also could be addressed with such a
backend and minor customization.

Broad crawling

This use case requires full distribution: spiders and backend. In addition to spiders process one should be running
strategy worker (s) and db worker (s), depending on chosen partitioning scheme.

Frontera can be used for broad set of tasks related to large scale web crawling:

• Broad web crawling, arbitrary number of websites and pages (we tested it on 45M documents volume and 100K
websites),

• Host-focused crawls: when you have more than 100 websites,

• Focused crawling:

– Topical: you search for a pages about some predefined topic,

– PageRank, HITS or other link graph algorithm guided.

Here are some of the real world problems:

• Building a search engine with content retrieval from the web.

• All kinds of research work on web graph: gathering links, statistics, structure of graph, tracking domain count,
etc.

4 Chapter 1. Introduction

http://crawlera.com/

Frontera Documentation, Release 0.6.0

• More general focused crawling tasks: e.g. you search for pages that are big hubs, and frequently changing in
time.

1.2 Run modes

A diagram showing architecture of running modes:

1.2. Run modes 5

Frontera Documentation, Release 0.6.0

Mode Parent class Components needed Available
backends

Single process Backend single process running the crawler Memory,
SQLAlchemy

Distributed spiders Backend spiders and single db worker Memory,
SQLAlchemy

Distributed
backends

DistributedBackend spiders, strategy worker (s) and db
worker(s).

SQLAlchemy,
HBase

1.2.1 Single process

Frontera is instantiated in the same process as fetcher (for example in Scrapy). To achieve that use BACKEND setting
set to storage backend subclass of Backend. This run mode is suitable for small number of documents and time
non-critical applications.

1.2.2 Distributed spiders

Spiders are distributed and backend isn’t. Backend is running in db worker and it’s communicating with spiders using
message bus.

1. Use BACKEND in spider processes set to MessageBusBackend

2. In DB worker BACKEND should point to Backend subclasse.

3. Every spider process should have it’s own SPIDER_PARTITION_ID, starting from 0 to
SPIDER_FEED_PARTITIONS.

4. Both spiders and workers should have it’s MESSAGE_BUS setting set to the message bus class of your choice,
and other implementation depending settings.

This mode is suitable for applications where it’s critical to fetch documents fast, at the same time amount of them is
relatively small.

1.2.3 Distributed spiders and backend

Spiders and backend are distributed. Backend is divided on two parts: strategy worker and db worker. Strategy worker
instances are assigned to their own part of spider log.

1. Use BACKEND in spider processes set to MessageBusBackend

2. In DB and SW workers BACKEND should point to DistributedBackend subclasses. And selected backend
have to be configured.

3. Every spider process should have it’s own SPIDER_PARTITION_ID, starting from 0 to
SPIDER_FEED_PARTITIONS. Last must be accessible also to all DB worker instances.

4. Every SW worker process should have it’s own SCORING_PARTITION_ID, starting from 0 to
SPIDER_LOG_PARTITIONS. Last must be accessible to all SW worker instances.

5. Both spiders and workers should have it’s MESSAGE_BUS setting set to the message bus class of your choice
and selected message bus have to be configured.

Only Kafka message bus can be used in this mode out of the box and SQLAlchemy and HBase distributed backends.

This mode is suitable for broad crawling and large amount of pages.

6 Chapter 1. Introduction

Frontera Documentation, Release 0.6.0

1.3 Quick start single process

1.3.1 1. Create your spider

Create your Scrapy project as you usually do. Enter a directory where you’d like to store your code and then run:

scrapy startproject tutorial

This will create a tutorial directory with the following contents:

tutorial/
scrapy.cfg
tutorial/

__init__.py
items.py
pipelines.py
settings.py
spiders/

__init__.py
...

These are basically:

• scrapy.cfg: the project configuration file

• tutorial/: the project’s python module, you’ll later import your code from here.

• tutorial/items.py: the project’s items file.

• tutorial/pipelines.py: the project’s pipelines file.

• tutorial/settings.py: the project’s settings file.

• tutorial/spiders/: a directory where you’ll later put your spiders.

1.3.2 2. Install Frontera

See Installation Guide.

1.3.3 3. Integrate your spider with the Frontera

This article about integration with Scrapy explains this step in detail.

1.3.4 4. Choose your backend

Configure frontier settings to use a built-in backend like in-memory BFS:

BACKEND = 'frontera.contrib.backends.memory.BFS'

1.3.5 5. Run the spider

Run your Scrapy spider as usual from the command line:

scrapy crawl myspider

And that’s it! You got your spider running integrated with Frontera.

1.3. Quick start single process 7

Frontera Documentation, Release 0.6.0

1.3.6 What else?

You’ve seen a simple example of how to use Frontera with Scrapy, but this is just the surface. Frontera provides many
powerful features for making frontier management easy and efficient, such as:

• Built-in support for database storage for crawled pages.

• Easy built-in integration with Scrapy and any other crawler through its API.

• Two distributed crawling modes with use of ZeroMQ or Kafka and distributed backends.

• Creating different crawling logic/policies defining your own backend.

• Plugging your own request/response altering logic using middlewares.

• Create fake sitemaps and reproduce crawling without crawler with the Graph Manager.

• Record your Scrapy crawls and use it later for frontier testing.

• Logging facility that you can hook on to for catching errors and debug your frontiers.

1.4 Quick start distributed mode

Here is a guide how to quickly setup Frontera for single-machine, multiple process, local hacking. We’re going to
deploy the simpliest possible setup with SQLite and ZeroMQ. Please proceed to production-broad-crawling
article for a production setup details for broad crawlers.

1.4.1 Prerequisites

Here is what services needs to be installed and configured before running Frontera:

• Python 2.7+ or 3.4+

• Scrapy

Frontera installation

For Ubuntu, type in command line:

$ pip install frontera[distributed,zeromq,sql]

1.4.2 Get a spider example code

First checkout a GitHub Frontera repository:

$ git clone https://github.com/scrapinghub/frontera.git

There is a general spider example in examples/general-spider folder.

This is a general spider, it does almost nothing except extracting links from downloaded content. It also contains some
settings files, please consult settings reference to get more information.

8 Chapter 1. Introduction

Frontera Documentation, Release 0.6.0

1.4.3 Start cluster

First, let’s start ZeroMQ broker.

$ python -m frontera.contrib.messagebus.zeromq.broker

You should see a log output of broker with statistics on messages transmitted.

All further commands have to be made from general-spider root directory.

Second, let’s start DB worker.

$ python -m frontera.worker.db --config frontier.workersettings

You should notice that DB is writing messages to the output. It’s ok if nothing is written in ZeroMQ sockets, because
of absence of seed URLs in the system.

There are Spanish (.es zone) internet URLs from DMOZ directory in general spider repository, let’s use them as seeds
to bootstrap crawling. Starting the spiders:

$ scrapy crawl general -L INFO -s FRONTERA_SETTINGS=frontier.spider_settings -s SEEDS_SOURCE=seeds_es_smp.txt -s SPIDER_PARTITION_ID=0
$ scrapy crawl general -L INFO -s FRONTERA_SETTINGS=frontier.spider_settings -s SPIDER_PARTITION_ID=1

You should end up with 2 spider processes running. Each should read it’s own Frontera config, and first one is using
SEEDS_SOURCE option to read seeds to bootstrap Frontera cluster.

After some time seeds will pass the streams and will be scheduled for downloading by workers. At this moment
crawler is bootstrapped. Now you can periodically check DB worker output or metadata table contents to see that
there is actual activity.

1.5 Cluster setup guide

This guide is targeting an initial setup of crawling cluster, probably further tuning will be needed. This guide implies
you use Kafka message bus for cluster setup (recommended), although it is also possible to use ZeroMQ, which is less
reliable option.

1.5.1 Things to decide

• The speed you want to crawl with,

• number of spider processes (assuming that single spider process gives a maximum of 1200 pages/min),

• number of DB and Strategy worker processes.

1.5.2 Things to setup before you start

• Kafka,

• HBase (we recommend 1.0.x and higher),

• DNS Service (recommended but not required).

1.5. Cluster setup guide 9

Frontera Documentation, Release 0.6.0

1.5.3 Things to implement before you start

• Crawling strategy

• Spider code

1.5.4 Configuring Kafka

Create all topics needed for Kafka message bus

• spider log (frontier-done (see INCOMING_TOPIC)), set the number of partitions equal to number of strategy
worker instances,

• spider feed (frontier-todo (see OUTGOING_TOPIC)), set the number of partitions equal to number of spider
instances,

• scoring log (SCORING_TOPIC setting)

1.5.5 Configuring HBase

• create a namespace crawler (see HBASE_NAMESPACE),

• make sure Snappy compression is supported natively.

1.5.6 Configuring Frontera

Every Frontera component requires it’s own configuration module, but some options are shared, so we recommend to
create a common modules and import settings from it in component’s modules.

1. Create a common module and add there:

from __future__ import absolute_import
from frontera.settings.default_settings import MIDDLEWARES
MAX_NEXT_REQUESTS = 512
SPIDER_FEED_PARTITIONS = 2 # number of spider processes
SPIDER_LOG_PARTITIONS = 2 # worker instances
MIDDLEWARES.extend([

'frontera.contrib.middlewares.domain.DomainMiddleware',
'frontera.contrib.middlewares.fingerprint.DomainFingerprintMiddleware'

])

QUEUE_HOSTNAME_PARTITIONING = True
KAFKA_LOCATION = 'localhost:9092' # your Kafka broker host:port
SCORING_TOPIC = 'frontier-scoring'
URL_FINGERPRINT_FUNCTION='frontera.utils.fingerprint.hostname_local_fingerprint'

2. Create workers shared module:

from __future__ import absolute_import
from .common import *

BACKEND = 'frontera.contrib.backends.hbase.HBaseBackend'

MAX_NEXT_REQUESTS = 2048
NEW_BATCH_DELAY = 3.0

10 Chapter 1. Introduction

Frontera Documentation, Release 0.6.0

HBASE_THRIFT_HOST = 'localhost' # HBase Thrift server host and port
HBASE_THRIFT_PORT = 9090

3. Create DB worker module:

from __future__ import absolute_import
from .worker import *

LOGGING_CONFIG='logging-db.conf' # if needed

4. Create Strategy worker’s module:

from __future__ import absolute_import
from .worker import *

CRAWLING_STRATEGY = '' # path to the crawling strategy class
LOGGING_CONFIG='logging-sw.conf' # if needed

The logging can be configured according to https://docs.python.org/2/library/logging.config.html see the list of log-
gers.

5. Configure spiders module:

from __future__ import absolute_import
from .common import *

BACKEND = 'frontera.contrib.backends.remote.messagebus.MessageBusBackend'
KAFKA_GET_TIMEOUT = 0.5

6. Configure Scrapy settings module. It’s located in Scrapy project folder and referenced in scrapy.cfg. Let’s add
there:

from scrapy.settings.default_settings import SPIDER_MIDDLEWARES, DOWNLOADER_MIDDLEWARES

FRONTERA_SETTINGS = '' # module path to your Frontera spider config module

SCHEDULER = 'frontera.contrib.scrapy.schedulers.frontier.FronteraScheduler'
SPIDER_MIDDLEWARES.update({

'frontera.contrib.scrapy.middlewares.schedulers.SchedulerSpiderMiddleware': 999,
'frontera.contrib.scrapy.middlewares.seeds.file.FileSeedLoader': 1,

})
DOWNLOADER_MIDDLEWARES.update({

'frontera.contrib.scrapy.middlewares.schedulers.SchedulerDownloaderMiddleware': 999,
})

1.5.7 Starting the cluster

First, let’s start storage worker:

start DB worker only for batch generation
$ python -m frontera.worker.db --config [db worker config module] --no-incoming
...
Then start next one dedicated to spider log processing
$ python -m frontera.worker.db --no-batches --config [db worker config module]

Next, let’s start strategy workers, one process per spider log partition:

1.5. Cluster setup guide 11

https://docs.python.org/2/library/logging.config.html

Frontera Documentation, Release 0.6.0

$ python -m frontera.worker.strategy --config [strategy worker config] --partition-id 0
$ python -m frontera.worker.strategy --config [strategy worker config] --partition-id 1
...
$ python -m frontera.worker.strategy --config [strategy worker config] --partition-id N

You should notice that all processes are writing messages to the log. It’s ok if nothing is written in streams, because
of absence of seed URLs in the system.

Let’s put our seeds in text file, one URL per line and start spiders. A single spider per spider feed partition:

$ scrapy crawl [spider] -L INFO -s SEEDS_SOURCE = 'seeds.txt' -s SPIDER_PARTITION_ID=0
...
$ scrapy crawl [spider] -L INFO -s SPIDER_PARTITION_ID=1
$ scrapy crawl [spider] -L INFO -s SPIDER_PARTITION_ID=2
...
$ scrapy crawl [spider] -L INFO -s SPIDER_PARTITION_ID=N

You should end up with N spider processes running. Usually it’s enough for a single instance to read seeds
from SEEDS_SOURCE variable to pass seeds to Frontera cluster. Seeds are only read if spider queue is empty.
:SPIDER_PARTITION_ID can be read from config file also.

After some time seeds will pass the streams and will be scheduled for downloading by workers. Crawler is boot-
strapped.

Frontera at a glance Understand what Frontera is and how it can help you.

Run modes High level architecture and Frontera run modes.

Quick start single process using Scrapy as a container for running Frontera.

Quick start distributed mode with SQLite and ZeroMQ.

Cluster setup guide Setting up clustered version of Frontera on multiple machines with HBase and Kafka.

12 Chapter 1. Introduction

CHAPTER 2

Using Frontera

2.1 Installation Guide

The installation steps assume that you have the following requirements installed:

• Python 2.7+ or 3.4+

• pip and setuptools Python packages. Nowadays pip requires and installs setuptools if not installed.

You can install Frontera using pip.

To install using pip:

pip install frontera[option1,option2,...optionN]

2.1.1 Options

Each option installs dependencies needed for particular functionality.

• sql - relational database,

• graphs - Graph Manager,

• logging - color logging,

• tldextract - can be used with TLDEXTRACT_DOMAIN_INFO

• hbase - HBase distributed backend,

• zeromq - ZeroMQ message bus,

• kafka - Kafka message bus,

• distributed - workers dependencies.

2.2 Frontier objects

Frontier uses 2 object types: Request and Response. They are used to represent crawling HTTP requests and
responses respectively.

These classes are used by most Frontier API methods either as a parameter or as a return value depending on the
method used.

Frontier also uses these objects to internally communicate between different components (middlewares and backend).

13

http://www.python.org
http://www.pip-installer.org/en/latest/installing.html
https://pypi.python.org/pypi/setuptools
http://www.pip-installer.org/en/latest/installing.html
https://pypi.python.org/pypi/setuptools

Frontera Documentation, Release 0.6.0

2.2.1 Request objects

class frontera.core.models.Request(url, method=’GET’, headers=None, cookies=None,
meta=None, body=’‘)

A Request object represents an HTTP request, which is generated for seeds, extracted page links and next
pages to crawl. Each one should be associated to a Response object when crawled.

Parameters

• url (string) – URL to send.

• method (string) – HTTP method to use.

• headers (dict) – dictionary of headers to send.

• cookies (dict) – dictionary of cookies to attach to this request.

• meta (dict) – dictionary that contains arbitrary metadata for this request, the keys must
be bytes and the values must be either bytes or serializable objects such as lists, tuples,
dictionaries with byte type items.

body
A string representing the request body.

cookies
Dictionary of cookies to attach to this request.

headers
A dictionary which contains the request headers.

meta
A dict that contains arbitrary metadata for this request. This dict is empty for new Requests, and is usually
populated by different Frontera components (middlewares, etc). So the data contained in this dict depends
on the components you have enabled. The keys are bytes and the values are either bytes or serializable
objects such as lists, tuples, dictionaries with byte type items.

method
A string representing the HTTP method in the request. This is guaranteed to be uppercase. Example: GET,
POST, PUT, etc

url
A string containing the URL of this request.

2.2.2 Response objects

class frontera.core.models.Response(url, status_code=200, headers=None, body=’‘, re-
quest=None)

A Response object represents an HTTP response, which is usually downloaded (by the crawler) and sent back
to the frontier for processing.

Parameters

• url (string) – URL of this response.

• status_code (int) – the HTTP status of the response. Defaults to 200.

• headers (dict) – dictionary of headers to send.

• body (str) – the response body.

• request (Request) – The Request object that generated this response.

14 Chapter 2. Using Frontera

Frontera Documentation, Release 0.6.0

body
A str containing the body of this Response.

headers
A dictionary object which contains the response headers.

meta
A shortcut to the Request.meta attribute of the Response.request object (ie. self.request.meta).

request
The Request object that generated this response.

status_code
An integer representing the HTTP status of the response. Example: 200, 404, 500.

url
A string containing the URL of the response.

Fields domain and fingerprint are added by built-in middlewares

2.2.3 Identifying unique objects

As frontier objects are shared between the crawler and the frontier, some mechanism to uniquely identify objects is
needed. This method may vary depending on the frontier logic (in most cases due to the backend used).

By default, Frontera activates the fingerprint middleware to generate a unique fingerprint calculated from the
Request.url and Response.url fields, which is added to the Request.meta and Response.meta fields
respectively. You can use this middleware or implement your own method to manage frontier objects identification.

An example of a generated fingerprint for a Request object:

>>> request.url
'http://thehackernews.com'

>>> request.meta['fingerprint']
'198d99a8b2284701d6c147174cd69a37a7dea90f'

2.2.4 Adding additional data to objects

In most cases frontier objects can be used to represent the information needed to manage the frontier logic/policy.

Also, additional data can be stored by components using the Request.meta and Response.meta fields.

For instance the frontier domain middleware adds a domain info field for every Request.meta and
Response.meta if is activated:

>>> request.url
'http://www.scrapinghub.com'

>>> request.meta['domain']
{

"name": "scrapinghub.com",
"netloc": "www.scrapinghub.com",
"scheme": "http",
"sld": "scrapinghub",
"subdomain": "www",
"tld": "com"

}

2.2. Frontier objects 15

Frontera Documentation, Release 0.6.0

2.3 Middlewares

Frontier Middleware sits between FrontierManager and Backend objects, using hooks for Request and
Response processing according to frontier data flow.

It’s a light, low-level system for filtering and altering Frontier’s requests and responses.

2.3.1 Activating a middleware

To activate a Middleware component, add it to the MIDDLEWARES setting, which is a list whose values can be
class paths or instances of Middleware objects.

Here’s an example:

MIDDLEWARES = [
'frontera.contrib.middlewares.domain.DomainMiddleware',

]

Middlewares are called in the same order they’ve been defined in the list, to decide which order to assign to your
middleware pick a value according to where you want to insert it. The order does matter because each middleware
performs a different action and your middleware could depend on some previous (or subsequent) middleware being
applied.

Finally, keep in mind that some middlewares may need to be enabled through a particular setting. See each middleware
documentation for more info.

2.3.2 Writing your own middleware

Writing your own frontier middleware is easy. Each Middleware component is a single Python class inherited from
Component.

FrontierManager will communicate with all active middlewares through the methods described below.

class frontera.core.components.Middleware
Interface definition for a Frontier Middlewares

Methods

frontier_start()
Called when the frontier starts, see starting/stopping the frontier.

frontier_stop()
Called when the frontier stops, see starting/stopping the frontier.

add_seeds(seeds)
This method is called when new seeds are added to the frontier.

Parameters seeds (list) – A list of Request objects.

Returns Request object list or None

Should either return None or a list of Request objects.

If it returns None, FrontierManager won’t continue processing any other middleware and seed will
never reach the Backend.

If it returns a list of Request objects, this will be passed to next middleware. This process will repeat for
all active middlewares until result is finally passed to the Backend.

If you want to filter any seed, just don’t include it in the returned object list.

16 Chapter 2. Using Frontera

Frontera Documentation, Release 0.6.0

page_crawled(response)
This method is called every time a page has been crawled.

Parameters response (object) – The Response object for the crawled page.

Returns Response or None

Should either return None or a Response object.

If it returns None, FrontierManager won’t continue processing any other middleware and Backend
will never be notified.

If it returns a Response object, this will be passed to next middleware. This process will repeat for all
active middlewares until result is finally passed to the Backend.

If you want to filter a page, just return None.

request_error(page, error)
This method is called each time an error occurs when crawling a page.

Parameters

• request (object) – The crawled with error Request object.

• error (string) – A string identifier for the error.

Returns Request or None

Should either return None or a Request object.

If it returns None, FrontierManager won’t continue processing any other middleware and Backend
will never be notified.

If it returns a Response object, this will be passed to next middleware. This process will repeat for all
active middlewares until result is finally passed to the Backend.

If you want to filter a page error, just return None.

Class Methods

from_manager(manager)
Class method called from FrontierManager passing the manager itself.

Example of usage:

def from_manager(cls, manager):
return cls(settings=manager.settings)

2.3.3 Built-in middleware reference

This page describes all Middleware components that come with Frontera. For information on how to use them and
how to write your own middleware, see the middleware usage guide..

For a list of the components enabled by default (and their orders) see the MIDDLEWARES setting.

DomainMiddleware

class frontera.contrib.middlewares.domain.DomainMiddleware
This Middleware will add a domain info field for every Request.meta and Response.meta if is
activated.

domain object will contain the following fields, with both keys and values as bytes:

2.3. Middlewares 17

Frontera Documentation, Release 0.6.0

•netloc: URL netloc according to RFC 1808 syntax specifications

•name: Domain name

•scheme: URL scheme

•tld: Top level domain

•sld: Second level domain

•subdomain: URL subdomain(s)

An example for a Request object:

>>> request.url
'http://www.scrapinghub.com:8080/this/is/an/url'

>>> request.meta['domain']
{

"name": "scrapinghub.com",
"netloc": "www.scrapinghub.com",
"scheme": "http",
"sld": "scrapinghub",
"subdomain": "www",
"tld": "com"

}

If TEST_MODE is active, It will accept testing URLs, parsing letter domains:

>>> request.url
'A1'

>>> request.meta['domain']
{

"name": "A",
"netloc": "A",
"scheme": "-",
"sld": "-",
"subdomain": "-",
"tld": "-"

}

UrlFingerprintMiddleware

class frontera.contrib.middlewares.fingerprint.UrlFingerprintMiddleware
This Middleware will add a fingerprint field for every Request.meta and Response.meta if is
activated.

Fingerprint will be calculated from object URL, using the function defined in
URL_FINGERPRINT_FUNCTION setting. You can write your own fingerprint calculation function and
use by changing this setting. The fingerprint must be bytes.

An example for a Request object:

>>> request.url
'http//www.scrapinghub.com:8080'

>>> request.meta['fingerprint']
'60d846bc2969e9706829d5f1690f11dafb70ed18'

18 Chapter 2. Using Frontera

http://tools.ietf.org/html/rfc1808.html

Frontera Documentation, Release 0.6.0

frontera.utils.fingerprint.hostname_local_fingerprint(key)
This function is used for URL fingerprinting, which serves to uniquely identify the document in storage.
hostname_local_fingerprint is constructing fingerprint getting first 4 bytes as Crc32 from host, and
rest is MD5 from rest of the URL. Default option is set to make use of HBase block cache. It is expected to fit
all the documents of average website within one cache block, which can be efficiently read from disk once.

Parameters key – str URL

Returns str 20 bytes hex string

DomainFingerprintMiddleware

class frontera.contrib.middlewares.fingerprint.DomainFingerprintMiddleware
This Middleware will add a fingerprint field for every Request.meta and Response.meta
domain fields if is activated.

Fingerprint will be calculated from object URL, using the function defined in
DOMAIN_FINGERPRINT_FUNCTION setting. You can write your own fingerprint calculation function
and use by changing this setting. The fingerprint must be bytes

An example for a Request object:

>>> request.url
'http//www.scrapinghub.com:8080'

>>> request.meta['domain']
{

"fingerprint": "5bab61eb53176449e25c2c82f172b82cb13ffb9d",
"name": "scrapinghub.com",
"netloc": "www.scrapinghub.com",
"scheme": "http",
"sld": "scrapinghub",
"subdomain": "www",
"tld": "com"

}

2.4 Canonical URL Solver

Is a special middleware object responsible for identifying canonical URL address of the document and modifying
request or response metadata accordingly. Canonical URL solver always executes last in the middleware chain, before
calling Backend methods.

The main purpose of this component is preventing metadata records duplication and confusing crawler behavior con-
nected with it. The causes of this are: - Different redirect chains could lead to the same document. - The same
document can be accessible by more than one different URL.

Well designed system has it’s own, stable algorithm of choosing the right URL for each document. Also see Canonical
link element.

Canonical URL solver is instantiated during Frontera Manager initialization using class from CANONICAL_SOLVER
setting.

2.4. Canonical URL Solver 19

https://en.wikipedia.org/wiki/Canonical_link_element#Purpose
https://en.wikipedia.org/wiki/Canonical_link_element#Purpose

Frontera Documentation, Release 0.6.0

2.4.1 Built-in canonical URL solvers reference

Basic

Used as default.

class frontera.contrib.canonicalsolvers.basic.BasicCanonicalSolver
Implements a simple CanonicalSolver taking always first URL from redirect chain, if there were redirects. It
allows easily to avoid leaking of requests in Frontera (e.g. when request issued by get_next_requests()
never matched in page_crawled()) at the price of duplicating records in Frontera for pages having more
than one URL or complex redirects chains.

2.5 Backends

Frontier Backend is where the crawling logic/policies lies, essentially a brain of your crawler. Queue, Metadata
and States are classes where all low level code is meant to be placed, and Backend opposite, operates on a higher
levels. Frontera is bundled with database and in-memory implementations of Queue, Metadata and States which can be
combined in your custom backends or used standalone by directly instantiating FrontierManager and Backend.

Backend methods are called by the FrontierManager after Middleware, using hooks for Request and Response
processing according to frontier data flow.

Unlike Middleware, that can have many different instances activated, only one Backend can be used per frontier.

2.5.1 Activating a backend

To activate the frontier backend component, set it through the BACKEND setting.

Here’s an example:

BACKEND = 'frontera.contrib.backends.memory.FIFO'

Keep in mind that some backends may need to be additionally configured through a particular setting. See backends
documentation for more info.

2.5.2 Writing your own backend

Each backend component is a single Python class inherited from Backend or DistributedBackend and using
one or all of Queue, Metadata and States.

FrontierManager will communicate with active backend through the methods described below.

class frontera.core.components.Backend
Interface definition for frontier backend.

Methods

frontier_start()
Called when the frontier starts, see starting/stopping the frontier.

Returns None.

frontier_stop()
Called when the frontier stops, see starting/stopping the frontier.

Returns None.

20 Chapter 2. Using Frontera

Frontera Documentation, Release 0.6.0

finished()
Quick check if crawling is finished. Called pretty often, please make sure calls are lightweight.

Returns boolean

add_seeds(seeds)
This method is called when new seeds are added to the frontier.

Parameters seeds (list) – A list of Request objects.

Returns None.

page_crawled(response)
This method is called every time a page has been crawled.

Parameters response (object) – The Response object for the crawled page.

Returns None.

request_error(page, error)
This method is called each time an error occurs when crawling a page.

Parameters

• request (object) – The crawled with error Request object.

• error (string) – A string identifier for the error.

Returns None.

get_next_requests(max_n_requests, **kwargs)
Returns a list of next requests to be crawled.

Parameters

• max_next_requests (int) – Maximum number of requests to be returned by this
method.

• kwargs (dict) – A parameters from downloader component.

Returns list of Request objects.

Class Methods

from_manager(manager)
Class method called from FrontierManager passing the manager itself.

Example of usage:

def from_manager(cls, manager):
return cls(settings=manager.settings)

Properties

queue

Returns associated Queue object

states

Returns associated States object

metadata

Returns associated Metadata object

class frontera.core.components.DistributedBackend
Interface definition for distributed frontier backend. Implies using in strategy worker and DB worker.

2.5. Backends 21

Frontera Documentation, Release 0.6.0

Inherits all methods of Backend, and has two more class methods, which are called during strategy and db worker
instantiation.

classmethod DistributedBackend.strategy_worker(manager)

classmethod DistributedBackend.db_worker(manager)

Backend should communicate with low-level storage by means of these classes:

Metadata

class frontera.core.components.Metadata
Interface definition for a frontier metadata class. This class is responsible for storing documents metadata,
including content and optimized for write-only data flow.

Methods

add_seeds(seeds)
This method is called when new seeds are added to the frontier.

Parameters seeds (list) – A list of Request objects.

request_error(page, error)
This method is called each time an error occurs when crawling a page.

Parameters

• request (object) – The crawled with error Request object.

• error (string) – A string identifier for the error.

page_crawled(response)
This method is called every time a page has been crawled.

Parameters response (object) – The Response object for the crawled page.

Known implementations are: MemoryMetadata and sqlalchemy.components.Metadata.

Queue

class frontera.core.components.Queue
Interface definition for a frontier queue class. The queue has priorities and partitions.

Methods

get_next_requests(max_n_requests, partition_id, **kwargs)
Returns a list of next requests to be crawled, and excludes them from internal storage.

Parameters

• max_next_requests (int) – Maximum number of requests to be returned by this
method.

• kwargs (dict) – A parameters from downloader component.

Returns list of Request objects.

schedule(batch)
Schedules a new documents for download from batch, and updates score in metadata.

Parameters batch – list of tuples(fingerprint, score, request, schedule), if schedule is True,
then document needs to be scheduled for download, False - only update score in metadata.

22 Chapter 2. Using Frontera

Frontera Documentation, Release 0.6.0

count()
Returns count of documents in the queue.

Returns int

Known implementations are: MemoryQueue and sqlalchemy.components.Queue.

States

class frontera.core.components.States
Interface definition for a document states management class. This class is responsible for providing actual
documents state, and persist the state changes in batch-oriented manner.

Methods

update_cache(objs)
Reads states from meta[’state’] field of request in objs and stores states in internal cache.

Parameters objs – list or tuple of Request objects.

set_states(objs)
Sets meta[’state’] field from cache for every request in objs.

Parameters objs – list or tuple of Request objects.

flush(force_clear)
Flushes internal cache to storage.

Parameters force_clear – boolean, True - signals to clear cache after flush

fetch(fingerprints)
Get states from the persistent storage to internal cache.

Parameters fingerprints – list document fingerprints, which state to read

Known implementations are: MemoryStates and sqlalchemy.components.States.

2.5.3 Built-in backend reference

This article describes all backend components that come bundled with Frontera.

To know the default activated Backend check the BACKEND setting.

Basic algorithms

Some of the built-in Backend objects implement basic algorithms as as FIFO/LIFO or DFS/BFS for page visit
ordering.

Differences between them will be on storage engine used. For instance, memory.FIFO and sqlalchemy.FIFO
will use the same logic but with different storage engines.

All these backend variations are using the same CommonBackend class implementing one-time visit crawling policy
with priority queue.

class frontera.contrib.backends.CommonBackend
A simpliest possible backend, performing one-time crawl: if page was crawled once, it will not be crawled
again.

2.5. Backends 23

http://en.wikipedia.org/wiki/FIFO
http://en.wikipedia.org/wiki/LIFO_(computing)
http://en.wikipedia.org/wiki/Depth-first_search
http://en.wikipedia.org/wiki/Breadth-first_search

Frontera Documentation, Release 0.6.0

Memory backends

This set of Backend objects will use an heapq module as queue and native dictionaries as storage for basic algorithms.

class frontera.contrib.backends.memory.BASE
Base class for in-memory Backend objects.

class frontera.contrib.backends.memory.FIFO
In-memory Backend implementation of FIFO algorithm.

class frontera.contrib.backends.memory.LIFO
In-memory Backend implementation of LIFO algorithm.

class frontera.contrib.backends.memory.BFS
In-memory Backend implementation of BFS algorithm.

class frontera.contrib.backends.memory.DFS
In-memory Backend implementation of DFS algorithm.

class frontera.contrib.backends.memory.RANDOM
In-memory Backend implementation of a random selection algorithm.

SQLAlchemy backends

This set of Backend objects will use SQLAlchemy as storage for basic algorithms.

By default it uses an in-memory SQLite database as a storage engine, but any databases supported by SQLAlchemy
can be used.

If you need to use your own declarative sqlalchemy models, you can do it by using the
SQLALCHEMYBACKEND_MODELS setting.

This setting uses a dictionary where key represents the name of the model to define and value the model to use.

For a complete list of all settings used for SQLAlchemy backends check the settings section.

class frontera.contrib.backends.sqlalchemy.BASE
Base class for SQLAlchemy Backend objects.

class frontera.contrib.backends.sqlalchemy.FIFO
SQLAlchemy Backend implementation of FIFO algorithm.

class frontera.contrib.backends.sqlalchemy.LIFO
SQLAlchemy Backend implementation of LIFO algorithm.

class frontera.contrib.backends.sqlalchemy.BFS
SQLAlchemy Backend implementation of BFS algorithm.

class frontera.contrib.backends.sqlalchemy.DFS
SQLAlchemy Backend implementation of DFS algorithm.

class frontera.contrib.backends.sqlalchemy.RANDOM
SQLAlchemy Backend implementation of a random selection algorithm.

Revisiting backend

Based on custom SQLAlchemy backend, and queue. Crawling starts with seeds. After seeds are crawled, every
new document will be scheduled for immediate crawling. On fetching every new document will be scheduled for
recrawling after fixed interval set by SQLALCHEMYBACKEND_REVISIT_INTERVAL.

24 Chapter 2. Using Frontera

https://docs.python.org/2/library/heapq.html
http://en.wikipedia.org/wiki/FIFO
http://en.wikipedia.org/wiki/LIFO_(computing)
http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Depth-first_search
http://www.sqlalchemy.org/
http://docs.sqlalchemy.org/en/latest/dialects/index.html
http://docs.sqlalchemy.org/en/latest/orm/extensions/declarative/index.html
http://en.wikipedia.org/wiki/FIFO
http://en.wikipedia.org/wiki/LIFO_(computing)
http://en.wikipedia.org/wiki/Breadth-first_search
http://en.wikipedia.org/wiki/Depth-first_search

Frontera Documentation, Release 0.6.0

Current implementation of revisiting backend has no prioritization. During long term runs spider could go idle, because
there are no documents available for crawling, but there are documents waiting for their scheduled revisit time.

class frontera.contrib.backends.sqlalchemy.revisiting.Backend
Base class for SQLAlchemy Backend implementation of revisiting back-end.

HBase backend

class frontera.contrib.backends.hbase.HBaseBackend(manager)

Is more suitable for large scale web crawlers. Settings reference can be found here HBase backend. Consider tun-
ning a block cache to fit states within one block for average size website. To achieve this it’s recommended to use
hostname_local_fingerprint

to achieve documents closeness within the same host. This function can be selected with
URL_FINGERPRINT_FUNCTION setting.

2.6 Message bus

Message bus ss the transport layer abstraction mechanism. Frontera provides interface and several implementations.
Only one message bus can be used in crawler at the time, and it’s selected with MESSAGE_BUS setting.

Spiders process can use

class frontera.contrib.backends.remote.messagebus.MessageBusBackend(manager)

to communicate using message bus.

2.6.1 Built-in message bus reference

ZeroMQ

It’s the default option, implemented using lightweight ZeroMQ library in

class frontera.contrib.messagebus.zeromq.MessageBus(settings)

and can be configured using ZeroMQ message bus settings.

ZeroMQ message bus requires installed ZeroMQ library and running broker process, see Start cluster.

Overall ZeroMQ message bus is designed to get a working PoC quickly and smaller deployments. Mainly because it’s
prone to message loss when data flow of components isn’t properly adjusted or during startup. Here’s the recommended
order of components startup to avoid message loss:

1. db worker

2. strategy worker

3. spiders

Unfortunately, it’s not possible to avoid message loss when stopping running crawler with unfinished crawl. We recommend
to use Kafka message bus if your crawler application is sensitive to small message loss.

WARNING! ZeroMQ message bus doesn’t support yet multiple SW and DB workers, only one instance
of each worker type is allowed.

2.6. Message bus 25

http://zeromq.org/

Frontera Documentation, Release 0.6.0

Kafka

Can be selected with

class frontera.contrib.messagebus.kafkabus.MessageBus(settings)

and configured using Kafka message bus settings.

Requires running Kafka service and more suitable for large-scale web crawling.

2.6.2 Protocol

Depending on stream Frontera is using several message types to code it’s messages. Every message is a python native
object serialized using msgpack or JSON. The codec module can be selected using MESSAGE_BUS_CODEC, and it’s
required to export Encoder and Decoder classes.

Here are the classes needed to subclass to implement own codec:

class frontera.core.codec.BaseEncoder

encode_add_seeds(seeds)
Encodes add_seeds message

Parameters seeds (list) – A list of frontier Request objects

Returns bytes encoded message

encode_page_crawled(response)
Encodes a page_crawled message

Parameters response (object) – A frontier Response object

Returns bytes encoded message

encode_request_error(request, error)
Encodes a request_error message

Parameters

• request (object) – A frontier Request object

• error (string) – Error description

Returns bytes encoded message

encode_request(request)
Encodes requests for spider feed stream.

Parameters request (object) – Frontera Request object

Returns bytes encoded message

encode_update_score(request, score, schedule)
Encodes update_score messages for scoring log stream.

Parameters

• request (object) – Frontera Request object

• score (float) – score

• schedule (bool) – True if document needs to be scheduled for download

Returns bytes encoded message

26 Chapter 2. Using Frontera

http://kafka.apache.org/
http://msgpack.org/index.html

Frontera Documentation, Release 0.6.0

encode_new_job_id(job_id)
Encodes changing of job_id parameter.

Parameters job_id (int) –

Returns bytes encoded message

encode_offset(partition_id, offset)
Encodes current spider offset in spider feed.

Parameters

• partition_id (int) –

• offset (int) –

Returns bytes encoded message

class frontera.core.codec.BaseDecoder

decode(buffer)
Decodes the message.

Parameters buffer (bytes) – encoded message

Returns tuple of message type and related objects

decode_request(buffer)
Decodes Request objects.

Parameters buffer (bytes) – serialized string

Returns object Request

2.6.3 Available codecs

MsgPack

A MsgPack codec for Frontera. Implemented using native msgpack-python library.

Module: frontera.contrib.backends.remote.codecs.msgpack

JSON

A JSON codec for Frontera. Implemented using native json library.

Module: frontera.contrib.backends.remote.codecs.json

2.7 Crawling strategy

Use cluster example and frontera.worker.strategies.bfs module for reference. In general, you need
to write a crawling strategy class by subclassing:

class frontera.worker.strategies.BaseCrawlingStrategy(manager, mb_stream,
states_context)

Interface definition for a crawling strategy.

Before calling these methods strategy worker is adding ‘state’ key to meta field in every Request with state of
the URL. Pleases refer for the states to HBaseBackend implementation.

2.7. Crawling strategy 27

Frontera Documentation, Release 0.6.0

After exiting from all of these methods states from meta field are passed back and stored in the backend.

Methods

classmethod from_worker(manager, mb_stream, states_context)
Called on instantiation in strategy worker.

Parameters

• manager –

class Backend <frontera.core.manager.FrontierManager> instance

• mb_stream –

class UpdateScoreStream <frontera.worker.strategy.UpdateScoreStream> instance

Returns new instance

add_seeds(seeds)
Called when add_seeds event is received from spider log.

Parameters seeds (list) – A list of Request objects.

page_crawled(response)
Called every time document was successfully crawled, and receiving page_crawled event from spider log.

Parameters response (object) – The Response object for the crawled page.

page_error(request, error)
Called every time there was error during page downloading.

Parameters

• request (object) – The fetched with error Request object.

• error (str) – A string identifier for the error.

finished()
Called by Strategy worker, after finishing processing each cycle of spider log. If this method returns true,
then Strategy worker reports that crawling goal is achieved, stops and exits.

Returns bool

close()
Called when strategy worker is about to close crawling strategy.

The class can be put in any module and passed to strategy worker using command line option or
CRAWLING_STRATEGY setting on startup.

The strategy class instantiated in strategy worker, and can use it’s own storage or any other kind of resources. All
items from spider log will be passed through these methods. Scores returned doesn’t have to be the same as in method
arguments. Periodically finished() method is called to check if crawling goal is achieved.

2.8 Using the Frontier with Scrapy

Using Frontera is quite easy, it includes a set of Scrapy middlewares and Scrapy scheduler that encapsulates Frontera
usage and can be easily configured using Scrapy settings.

28 Chapter 2. Using Frontera

http://doc.scrapy.org/en/latest/topics/downloader-middleware.html
http://doc.scrapy.org/en/latest/topics/settings.html

Frontera Documentation, Release 0.6.0

2.8.1 Activating the frontier

The Frontera uses 2 different middlewares: SchedulerSpiderMiddleware and
SchedulerDownloaderMiddleware, and it’s own scheduler FronteraScheduler.

To activate the Frontera in your Scrapy project, just add them to the SPIDER_MIDDLEWARES, DOWN-
LOADER_MIDDLEWARES and SCHEDULER settings:

SPIDER_MIDDLEWARES.update({
'frontera.contrib.scrapy.middlewares.schedulers.SchedulerSpiderMiddleware': 1000,

})

DOWNLOADER_MIDDLEWARES.update({
'frontera.contrib.scrapy.middlewares.schedulers.SchedulerDownloaderMiddleware': 1000,

})

SCHEDULER = 'frontera.contrib.scrapy.schedulers.frontier.FronteraScheduler'

Create a Frontera settings.py file and add it to your Scrapy settings:

FRONTERA_SETTINGS = 'tutorial.frontera.settings'

Another option is to put these settings right into Scrapy settings module.

2.8.2 Organizing files

When using frontier with a Scrapy project, we propose the following directory structure:

my_scrapy_project/
my_scrapy_project/

frontera/
__init__.py
settings.py
middlewares.py
backends.py

spiders/
...

__init__.py
settings.py

scrapy.cfg

These are basically:

• my_scrapy_project/frontera/settings.py: the Frontera settings file.

• my_scrapy_project/frontera/middlewares.py: the middlewares used by the Frontera.

• my_scrapy_project/frontera/backends.py: the backend(s) used by the Frontera.

• my_scrapy_project/spiders: the Scrapy spiders folder

• my_scrapy_project/settings.py: the Scrapy settings file

• scrapy.cfg: the Scrapy config file

2.8. Using the Frontier with Scrapy 29

http://doc.scrapy.org/en/latest/topics/settings.html#std:setting-SPIDER_MIDDLEWARES
http://doc.scrapy.org/en/latest/topics/settings.html#std:setting-DOWNLOADER_MIDDLEWARES
http://doc.scrapy.org/en/latest/topics/settings.html#std:setting-DOWNLOADER_MIDDLEWARES
http://doc.scrapy.org/en/latest/topics/settings.html#std:setting-SCHEDULER

Frontera Documentation, Release 0.6.0

2.8.3 Running the rawl

Just run your Scrapy spider as usual from the command line:

scrapy crawl myspider

2.8.4 Frontier Scrapy settings

You can configure your frontier two ways:

• Using FRONTERA_SETTINGS parameter, which is a module path pointing to Frontera settings in Scrapy set-
tings file. Defaults to None

• Define frontier settings right into Scrapy settings file.

Defining frontier settings via Scrapy settings

Frontier settings can also be defined via Scrapy settings. In this case, the order of precedence will be the following:

1. Settings defined in the file pointed by FRONTERA_SETTINGS (higher precedence)

2. Settings defined in the Scrapy settings

3. Default frontier settings

2.8.5 Writing Scrapy spider

Spider logic

Creation of basic Scrapy spider is described at Quick start single process page.

It’s also a good practice to prevent spider from closing because of insufficiency of queued requests transport::

@classmethod
def from_crawler(cls, crawler, *args, **kwargs):

spider = cls(*args, **kwargs)
spider._set_crawler(crawler)
spider.crawler.signals.connect(spider.spider_idle, signal=signals.spider_idle)
return spider

def spider_idle(self):
self.log("Spider idle signal caught.")
raise DontCloseSpider

Configuration guidelines

There several tunings you can make for efficient broad crawling.

Adding one of seed loaders for bootstrapping of crawling process:

SPIDER_MIDDLEWARES.update({
'frontera.contrib.scrapy.middlewares.seeds.file.FileSeedLoader': 1,

})

30 Chapter 2. Using Frontera

http://frontera.readthedocs.org/en/latest/topics/quick-start-single.html

Frontera Documentation, Release 0.6.0

Various settings suitable for broad crawling:

HTTPCACHE_ENABLED = False # Turns off disk cache, which has low hit ratio during broad crawls
REDIRECT_ENABLED = True
COOKIES_ENABLED = False
DOWNLOAD_TIMEOUT = 120
RETRY_ENABLED = False # Retries can be handled by Frontera itself, depending on crawling strategy
DOWNLOAD_MAXSIZE = 10 * 1024 * 1024 # Maximum document size, causes OOM kills if not set
LOGSTATS_INTERVAL = 10 # Print stats every 10 secs to console

Auto throttling and concurrency settings for polite and responsible crawling::

auto throttling
AUTOTHROTTLE_ENABLED = True
AUTOTHROTTLE_DEBUG = False
AUTOTHROTTLE_MAX_DELAY = 3.0
AUTOTHROTTLE_START_DELAY = 0.25 # Any small enough value, it will be adjusted during operation by averaging

with response latencies.
RANDOMIZE_DOWNLOAD_DELAY = False

concurrency
CONCURRENT_REQUESTS = 256 # Depends on many factors, and should be determined experimentally
CONCURRENT_REQUESTS_PER_DOMAIN = 10
DOWNLOAD_DELAY = 0.0

Check also Scrapy broad crawling recommendations.

2.8.6 Scrapy Seed Loaders

Frontera has some built-in Scrapy middlewares for seed loading.

Seed loaders use the process_start_requests method to generate requests from a source that are added later
to the FrontierManager.

Activating a Seed loader

Just add the Seed Loader middleware to the SPIDER_MIDDLEWARES scrapy settings:

SPIDER_MIDDLEWARES.update({
'frontera.contrib.scrapy.middlewares.seeds.FileSeedLoader': 650

})

FileSeedLoader

Load seed URLs from a file. The file must be formatted contain one URL per line:

http://www.asite.com
http://www.anothersite.com
...

Yo can disable URLs using the # character:

2.8. Using the Frontier with Scrapy 31

http://doc.scrapy.org/en/master/topics/broad-crawls.html

Frontera Documentation, Release 0.6.0

...
#http://www.acommentedsite.com
...

Settings:

• SEEDS_SOURCE: Path to the seeds file

S3SeedLoader

Load seeds from a file stored in an Amazon S3 bucket

File format should the same one used in FileSeedLoader.

Settings:

• SEEDS_SOURCE: Path to S3 bucket file. eg: s3://some-project/seed-urls/

• SEEDS_AWS_ACCESS_KEY: S3 credentials Access Key

• SEEDS_AWS_SECRET_ACCESS_KEY: S3 credentials Secret Access Key

2.9 Settings

The Frontera settings allows you to customize the behaviour of all components, including the FrontierManager,
Middleware and Backend themselves.

The infrastructure of the settings provides a global namespace of key-value mappings that can be used to pull config-
uration values from. The settings can be populated through different mechanisms, which are described below.

For a list of available built-in settings see: Built-in settings reference.

2.9.1 Designating the settings

When you use Frontera, you have to tell it which settings you’re using. As FrontierManager is the main entry
point to Frontier usage, you can do this by using the method described in the Loading from settings section.

When using a string path pointing to a settings file for the frontier we propose the following directory structure:

my_project/
frontier/

__init__.py
settings.py
middlewares.py
backends.py

...

These are basically:

• frontier/settings.py: the frontier settings file.

• frontier/middlewares.py: the middlewares used by the frontier.

• frontier/backends.py: the backend(s) used by the frontier.

32 Chapter 2. Using Frontera

Frontera Documentation, Release 0.6.0

2.9.2 How to access settings

Settings can be accessed through the FrontierManager.settings attribute, that is passed to
Middleware.from_manager and Backend.from_manager class methods:

class MyMiddleware(Component):

@classmethod
def from_manager(cls, manager):

manager = crawler.settings
if settings.TEST_MODE:

print "test mode is enabled!"

In other words, settings can be accessed as attributes of the Settings object.

2.9.3 Settings class

class frontera.settings.Settings(module=None, attributes=None)

2.9.4 Built-in frontier settings

Here’s a list of all available Frontera settings, in alphabetical order, along with their default values and the scope where
they apply.

AUTO_START

Default: True

Whether to enable frontier automatic start. See Starting/Stopping the frontier

BACKEND

Default: ’frontera.contrib.backends.memory.FIFO’

The Backend to be used by the frontier. For more info see Activating a backend.

BC_MIN_REQUESTS

Default: 64

Broad crawling queue get operation will keep retrying until specified number of requests is collected. Maximum
number of retries is hard-coded to 3.

BC_MIN_HOSTS

Default: 24

Keep retyring when getting requests from queue, until there are requests for specified minimum number of hosts
collected. Maximum number of retries is hard-coded and equals 3.

2.9. Settings 33

Frontera Documentation, Release 0.6.0

BC_MAX_REQUESTS_PER_HOST

Default:: 128

Don’t include (if possible) batches of requests containing requests for specific host if there are already more then
specified count of maximum requests per host. This is a suggestion for broad crawling queue get algorithm.

CANONICAL_SOLVER

Default: frontera.contrib.canonicalsolvers.Basic

The CanonicalSolver to be used by the frontier for resolving canonical URLs. For more info see Canonical URL
Solver.

SPIDER_LOG_CONSUMER_BATCH_SIZE

Default: 512

This is a batch size used by strategy and db workers for consuming of spider log stream. Increasing it will cause
worker to spend more time on every task, but processing more items per task, therefore leaving less time for other
tasks during some fixed time interval. Reducing it will result to running several tasks within the same time interval,
but with less overall efficiency. Use it when your consumers too slow, or too fast.

SCORING_LOG_CONSUMER_BATCH_SIZE

Default: 512

This is a batch size used by db worker for consuming of scoring log stream. Use it when you need to adjust scoring
log consumption speed.

CRAWLING_STRATEGY

Default: None

The path to crawling strategy class, instantiated and used in strategy worker to prioritize and stop crawling in dis-
tributed run mode.

DELAY_ON_EMPTY

Default: 5.0

Delay between calls to backend for new batches in Scrapy scheduler, when queue size is getting below
CONCURRENT_REQUESTS. When backend has no requests to fetch, this delay helps to exhaust the rest of the buffer
without hitting backend on every request. Increase it if calls to your backend is taking too long, and decrease if you
need a fast spider bootstrap from seeds.

KAFKA_GET_TIMEOUT

Default: 5.0

Time process should block until requested amount of data will be received from message bus.

34 Chapter 2. Using Frontera

Frontera Documentation, Release 0.6.0

KAFKA_CODEC_LEGACY

Default: KAFKA_CODEC_LEGACY

Kafka-python 0.x version compression codec to use, is a string and could be one of none, snappy or gzip.

LOGGING_CONFIG

Default: logging.conf

The path to a file with logging module configuration. See https://docs.python.org/2/library/logging.config.html#logging-
config-fileformat If file is absent, the logging system will be initialized with logging.basicConfig() and
CONSOLE handler will be used. This option is used only in db worker and strategy worker.

MAX_NEXT_REQUESTS

Default: 64

The maximum number of requests returned by get_next_requestsAPI method. In distributed context it could be
amount of requests produced per spider by db worker or count of requests read from message bus per attempt to fill the
spider queue. In single process it’s the count of requests to get from backend per one call to get_next_requests
method.

MAX_REQUESTS

Default: 0

Maximum number of returned requests after which Frontera is finished. If value is 0 (default), the frontier will continue
indefinitely. See Finishing the frontier.

MESSAGE_BUS

Default: frontera.contrib.messagebus.zeromq.MessageBus

Points Frontera to message bus implementation. Defaults to ZeroMQ.

MESSAGE_BUS_CODEC

Default: frontera.contrib.backends.remote.codecs.msgpack

Points Frontera to message bus codec implementation. Here is the codec interface description. Defaults to MsgPack.

MIDDLEWARES

A list containing the middlewares enabled in the frontier. For more info see Activating a middleware.

Default:

[
'frontera.contrib.middlewares.fingerprint.UrlFingerprintMiddleware',

]

2.9. Settings 35

https://docs.python.org/2/library/logging.config.html#logging-config-fileformat
https://docs.python.org/2/library/logging.config.html#logging-config-fileformat

Frontera Documentation, Release 0.6.0

NEW_BATCH_DELAY

Default: 30.0

Used in DB worker, and it’s a time interval between production of new batches for all partitions. If partition is busy, it
will be skipped.

OVERUSED_SLOT_FACTOR

Default: 5.0

(in progress + queued requests in that slot) / max allowed concurrent downloads per slot before slot is considered
overused. This affects only Scrapy scheduler.”

REQUEST_MODEL

Default: ’frontera.core.models.Request’

The Request model to be used by the frontier.

RESPONSE_MODEL

Default: ’frontera.core.models.Response’

The Response model to be used by the frontier.

SCORING_PARTITION_ID

Default: 0

Used by strategy worker, and represents partition startegy worker assigned to.

SPIDER_LOG_PARTITIONS

Default: 1

Number of spider log stream partitions. This affects number of required strategy worker (s), each strategy worker
assigned to it’s own partition.

SPIDER_FEED_PARTITIONS

Default: 1

Number of spider feed partitions. This directly affects number of spider processes running. Every spider is assigned
to it’s own partition.

SPIDER_PARTITION_ID

Default: 0

Per-spider setting, pointing spider to it’s assigned partition.

36 Chapter 2. Using Frontera

Frontera Documentation, Release 0.6.0

STATE_CACHE_SIZE

Default: 1000000

Maximum count of elements in state cache before it gets clear.

STORE_CONTENT

Default: False

Determines if content should be sent over the message bus and stored in the backend: a serious performance killer.

TEST_MODE

Default: False

Whether to enable frontier test mode. See Frontier test mode

2.9.5 Built-in fingerprint middleware settings

Settings used by the UrlFingerprintMiddleware and DomainFingerprintMiddleware.

URL_FINGERPRINT_FUNCTION

Default: frontera.utils.fingerprint.sha1

The function used to calculate the url fingerprint.

DOMAIN_FINGERPRINT_FUNCTION

Default: frontera.utils.fingerprint.sha1

The function used to calculate the domain fingerprint.

TLDEXTRACT_DOMAIN_INFO

Default: False

If set to True, will use tldextract to attach extra domain information (second-level, top-level and subdomain) to meta
field (see Adding additional data to objects).

2.9.6 Built-in backends settings

SQLAlchemy

SQLALCHEMYBACKEND_CACHE_SIZE

Default: 10000

SQLAlchemy Metadata LRU Cache size. It’s used for caching objects, which are requested from DB every time al-
ready known, documents are crawled. This is mainly saves DB throughput, increase it if you’re experiencing problems
with too high volume of SELECT’s to Metadata table, or decrease if you need to save memory.

2.9. Settings 37

https://pypi.python.org/pypi/tldextract

Frontera Documentation, Release 0.6.0

SQLALCHEMYBACKEND_CLEAR_CONTENT

Default: True

Set to False if you need to disable table content clean up on backend instantiation (e.g. every Scrapy spider run).

SQLALCHEMYBACKEND_DROP_ALL_TABLES

Default: True

Set to False if you need to disable dropping of DB tables on backend instantiation (e.g. every Scrapy spider run).

SQLALCHEMYBACKEND_ENGINE

Default:: sqlite:///:memory:

SQLAlchemy database URL. Default is set to memory.

SQLALCHEMYBACKEND_ENGINE_ECHO

Default: False

Turn on/off SQLAlchemy verbose output. Useful for debugging SQL queries.

SQLALCHEMYBACKEND_MODELS

Default:

{
'MetadataModel': 'frontera.contrib.backends.sqlalchemy.models.MetadataModel',
'StateModel': 'frontera.contrib.backends.sqlalchemy.models.StateModel',
'QueueModel': 'frontera.contrib.backends.sqlalchemy.models.QueueModel'

}

This is mapping with SQLAlchemy models used by backends. It is mainly used for customization.

Revisiting backend

SQLALCHEMYBACKEND_REVISIT_INTERVAL

Default: timedelta(days=1)

Time between document visits, expressed in datetime.timedelta objects. Changing of this setting will only
affect documents scheduled after the change. All previously queued documents will be crawled with old periodicity.

HBase backend

HBASE_BATCH_SIZE

Default: 9216

38 Chapter 2. Using Frontera

Frontera Documentation, Release 0.6.0

Count of accumulated PUT operations before they sent to HBase.

HBASE_DROP_ALL_TABLES

Default: False

Enables dropping and creation of new HBase tables on worker start.

HBASE_METADATA_TABLE

Default: metadata

Name of the documents metadata table.

HBASE_NAMESPACE

Default: crawler

Name of HBase namespace where all crawler related tables will reside.

HBASE_QUEUE_TABLE

Default: queue

Name of HBase priority queue table.

HBASE_STATE_CACHE_SIZE_LIMIT

Default: 3000000

Number of items in the state cache of strategy worker, before it get’s flushed to HBase and cleared.

HBASE_THRIFT_HOST

Default: localhost

HBase Thrift server host.

HBASE_THRIFT_PORT

Default: 9090

HBase Thrift server port

HBASE_USE_FRAMED_COMPACT

Default: False

Enabling this option dramatically reduces transmission overhead, but the server needs to be properly configured to use
Thrifts framed transport and compact protocol.

2.9. Settings 39

Frontera Documentation, Release 0.6.0

HBASE_USE_SNAPPY

Default: False

Whatever to compress content and metadata in HBase using Snappy. Decreases amount of disk and network IO within
HBase, lowering response times. HBase have to be properly configured to support Snappy compression.

2.9.7 ZeroMQ message bus settings

The message bus class is distributed_frontera.messagebus.zeromq.MessageBus

ZMQ_ADDRESS

Default: 127.0.0.1

Defines where the ZeroMQ socket should bind or connect. Can be a hostname or an IP address. Right now ZMQ has
only been properly tested with IPv4. Proper IPv6 support will be added in the near future.

ZMQ_BASE_PORT

Default: 5550

The base port for all ZeroMQ sockets. It uses 6 sockets overall and port starting from base with step 1. Be sure that
interval [base:base+5] is available.

2.9.8 Kafka message bus settings

The message bus class is frontera.contrib.messagebus.kafkabus.MessageBus

KAFKA_LOCATION

Hostname and port of kafka broker, separated with :. Can be a string with hostname:port pair separated with commas(,).

FRONTIER_GROUP

Default: general

Kafka consumer group name, used for almost everything.

INCOMING_TOPIC

Default: frontier-done

Spider log stream topic name.

OUTGOING_TOPIC

Default: frontier-todo

Spider feed stream topic name.

40 Chapter 2. Using Frontera

Frontera Documentation, Release 0.6.0

SCORING_GROUP

Default: strategy-workers

A group used by strategy workers for spider log reading. Needs to be different than FRONTIER_GROUP.

SCORING_TOPIC

Kafka topic used for scoring log stream.

2.9.9 Default settings

If no settings are specified, frontier will use the built-in default ones. For a complete list of default values see: Built-in
settings reference. All default settings can be overridden.

Installation Guide HOWTO and Dependencies options.

Frontier objects Understand the classes used to represent requests and responses.

Middlewares Filter or alter information for links and documents.

Canonical URL Solver Identify and make use of canonical url of document.

Backends Define your own crawling policy and custom storage.

Message bus Built-in message bus reference.

Crawling strategy Implementing own crawling strategy for distributed backend.

Using the Frontier with Scrapy Learn how to use Frontera with Scrapy.

Settings Settings reference.

2.9. Settings 41

Frontera Documentation, Release 0.6.0

42 Chapter 2. Using Frontera

CHAPTER 3

Advanced usage

3.1 What is a Crawl Frontier?

Frontera is a crawl frontier framework, the part of a crawling system that decides the logic and policies to follow
when a crawler is visiting websites (what pages should be crawled next, priorities and ordering, how often pages are
revisited, etc).

A usual crawl frontier scheme is:

The frontier is initialized with a list of start URLs, that we call the seeds. Once the frontier is initialized the crawler
asks it what pages should be visited next. As the crawler starts to visit the pages and obtains results, it will inform the
frontier of each page response and also of the extracted hyperlinks contained within the page. These links are added
by the frontier as new requests to visit according to the frontier policies.

This process (ask for new requests/notify results) is repeated until the end condition for the crawl is reached. Some
crawlers may never stop, that’s what we call continuous crawls.

Frontier policies can be based on almost any logic. Common use cases are usually based on scores/priorities, computed
from one or many page attributes (freshness, update times, content relevance for certain terms, etc). They can also be
based in really simple logic as FIFO/LIFO or DFS/BFS page visit ordering.

Depending on frontier logic, a persistent storage system may be needed to store, update or query information about
the pages. Other systems can be 100% volatile and not share any information at all between different crawls.

Please refer for further crawl frontier theory at URL frontier article of Introduction to Information Retrieval book by
Christopher D. Manning, Prabhakar Raghavan & Hinrich Schütze.

43

http://en.wikipedia.org/wiki/FIFO
http://en.wikipedia.org/wiki/LIFO_(computing)
http://en.wikipedia.org/wiki/Depth-first_search
http://en.wikipedia.org/wiki/Breadth-first_search
http://nlp.stanford.edu/IR-book/html/htmledition/the-url-frontier-1.html

Frontera Documentation, Release 0.6.0

3.2 Graph Manager

The Graph Manager is a tool to represent web sitemaps as a graph.

It can easily be used to test frontiers. We can “fake” crawler request/responses by querying pages to the graph manager,
and also know the links extracted for each one without using a crawler at all. You can make your own fake tests or use
the Frontier Tester tool.

You can use it by defining your own sites for testing or use the Scrapy Recorder to record crawlings that can be
reproduced later.

3.2.1 Defining a Site Graph

Pages from a web site and its links can be easily defined as a directed graph, where each node represents a page and
the edges the links between them.

Let’s use a really simple site representation with a starting page A that have links inside to tree pages B, C, D. We can
represent the site with this graph:

We use a list to represent the different site pages and one tuple to define the page and its links, for the previous example:

site = [
('A', ['B', 'C', 'D']),

]

Note that we don’t need to define pages without links, but we can also use it as a valid representation:

site = [
('A', ['B', 'C', 'D']),
('B', []),
('C', []),
('D', []),

]

A more complex site:

44 Chapter 3. Advanced usage

Frontera Documentation, Release 0.6.0

Can be represented as:

site = [
('A', ['B', 'C', 'D']),
('D', ['A', 'D', 'E', 'F']),

]

Note that D is linking to itself and to his parent A.

In the same way, a page can have several parents:

3.2. Graph Manager 45

Frontera Documentation, Release 0.6.0

site = [
('A', ['B', 'C', 'D']),
('B', ['C']),
('D', ['C']),

]

In order to simplify examples we’re not using urls for page representation, but of course urls are the intended use for
site graphs:

site = [
('http://example.com', ['http://example.com/anotherpage', 'http://othersite.com']),

]

46 Chapter 3. Advanced usage

Frontera Documentation, Release 0.6.0

3.2.2 Using the Graph Manager

Once we have defined our site represented as a graph, we can start using it with the Graph Manager.

We must first create our graph manager:

>>> from frontera.utils import graphs
>>> g = graphs.Manager()

And add the site using the add_site method:

>>> site = [('A', ['B', 'C', 'D'])]
>>> g.add_site(site)

The manager is now initialized and ready to be used.

We can get all the pages in the graph:

>>> g.pages
[<1:A*>, <2:B>, <3:C>, <4:D>]

Asterisk represents that the page is a seed, if we want to get just the seeds of the site graph:

>>> g.seeds
[<1:A*>]

We can get individual pages using get_page, if a page does not exists None is returned

>>> g.get_page('A')
<1:A*>

>>> g.get_page('F')
None

3.2.3 CrawlPage objects

Pages are represented as a CrawlPage object:

class CrawlPage
A CrawlPage object represents an Graph Manager page, which is usually generated in the Graph Manager.

id
Autonumeric page id.

url
The url of the page.

status
Represents the HTTP code status of the page.

is_seed
Boolean value indicating if the page is seed or not.

links
List of pages the current page links to.

3.2. Graph Manager 47

Frontera Documentation, Release 0.6.0

referers
List of pages that link to the current page.

In our example:

>>> p = g.get_page('A')
>>> p.id
1

>>> p.url
u'A'

>>> p.status # defaults to 200
u'200'

>>> p.is_seed
True

>>> p.links
[<2:B>, <3:C>, <4:D>]

>>> p.referers # No referers for A
[]

>>> g.get_page('B').referers # referers for B
[<1:A*>]

3.2.4 Adding pages and Links

Site graphs can be also defined adding pages and links individually, the same graph from our example can be defined
this way:

>>> g = graphs.Manager()
>>> a = g.add_page(url='A', is_seed=True)
>>> b = g.add_link(page=a, url='B')
>>> c = g.add_link(page=a, url='C')
>>> d = g.add_link(page=a, url='D')

add_page and add_link can be combined with add_site and used anytime:

>>> site = [('A', ['B', 'C', 'D'])]
>>> g = graphs.Manager()
>>> g.add_site(site)
>>> d = g.get_page('D')
>>> g.add_link(d, 'E')

3.2.5 Adding multiple sites

Multiple sites can be added to the manager:

>>> site1 = [('A1', ['B1', 'C1', 'D1'])]
>>> site2 = [('A2', ['B2', 'C2', 'D2'])]

48 Chapter 3. Advanced usage

Frontera Documentation, Release 0.6.0

>>> g = graphs.Manager()
>>> g.add_site(site1)
>>> g.add_site(site2)

>>> g.pages
[<1:A1*>, <2:B1>, <3:C1>, <4:D1>, <5:A2*>, <6:B2>, <7:C2>, <8:D2>]

>>> g.seeds
[<1:A1*>, <5:A2*>]

Or as a list of sites with add_site_list method:

>>> site_list = [
[('A1', ['B1', 'C1', 'D1'])],
[('A2', ['B2', 'C2', 'D2'])],

]
>>> g = graphs.Manager()
>>> g.add_site_list(site_list)

3.2.6 Graphs Database

Graph Manager uses SQLAlchemy to store and represent graphs.

By default it uses an in-memory SQLite database as a storage engine, but any databases supported by SQLAlchemy
can be used.

An example using SQLite:

>>> g = graphs.Manager(engine='sqlite:///graph.db')

Changes are committed with every new add by default, graphs can be loaded later:

>>> graph = graphs.Manager(engine='sqlite:///graph.db')
>>> graph.add_site(('A', []))

>>> another_graph = graphs.Manager(engine='sqlite:///graph.db')
>>> another_graph.pages
[<1:A1*>]

A database content reset can be done using clear_content parameter:

>>> g = graphs.Manager(engine='sqlite:///graph.db', clear_content=True)

3.2.7 Using graphs with status codes

In order to recreate/simulate crawling using graphs, HTTP response codes can be defined for each page.

Example for a 404 error:

>>> g = graphs.Manager()
>>> g.add_page(url='A', status=404)

3.2. Graph Manager 49

http://www.sqlalchemy.org/
http://docs.sqlalchemy.org/en/rel_0_9/dialects/index.html

Frontera Documentation, Release 0.6.0

Status codes can be defined for sites in the following way using a list of tuples:

>>> site_with_status_codes = [
((200, "A"), ["B", "C"]),
((404, "B"), ["D", "E"]),
((500, "C"), ["F", "G"]),

]
>>> g = graphs.Manager()
>>> g.add_site(site_with_status_codes)

Default status code value is 200 for new pages.

3.2.8 A simple crawl faking example

Frontier tests can better be done using the Frontier Tester tool, but here’s an example of how fake a crawl with a
frontier:

from frontera import FrontierManager, Request, Response
from frontera.utils import graphs

if __name__ == '__main__':
Load graph from existing database
graph = graphs.Manager('sqlite:///graph.db')

Create frontier from default settings
frontier = FrontierManager.from_settings()

Create and add seeds
seeds = [Request(seed.url) for seed in graph.seeds]
frontier.add_seeds(seeds)

Get next requests
next_requets = frontier.get_next_requests()

Crawl pages
while (next_requests):

for request in next_requests:

Fake page crawling
crawled_page = graph.get_page(request.url)

Create response
response = Response(url=crawled_page.url, status_code=crawled_page.status)

Update Page
page = frontier.page_crawled(response=response

links=[link.url for link in crawled_page.links])
Get next requests
next_requets = frontier.get_next_requests()

3.2.9 Rendering graphs

Graphs can be rendered to png files:

50 Chapter 3. Advanced usage

Frontera Documentation, Release 0.6.0

>>> g.render(filename='graph.png', label='A simple Graph')

Rendering graphs uses pydot, a Python interface to Graphviz‘s Dot language.

3.2.10 How to use it

Graph Manager can be used to test frontiers in conjunction with Frontier Tester and also with Scrapy Recordings.

3.3 Recording a Scrapy crawl

Scrapy Recorder is a set of Scrapy middlewares that will allow you to record a scrapy crawl and store it into a Graph
Manager.

This can be useful to perform frontier tests without having to crawl the entire site again or even using Scrapy.

3.3.1 Activating the recorder

The recorder uses 2 different middlewares: CrawlRecorderSpiderMiddleware and
CrawlRecorderDownloaderMiddleware.

To activate the recording in your Scrapy project, just add them to the SPIDER_MIDDLEWARES and DOWN-
LOADER_MIDDLEWARES settings:

SPIDER_MIDDLEWARES.update({
'frontera.contrib.scrapy.middlewares.recording.CrawlRecorderSpiderMiddleware': 1000,

})

DOWNLOADER_MIDDLEWARES.update({
'frontera.contrib.scrapy.middlewares.recording.CrawlRecorderDownloaderMiddleware': 1000,

})

3.3.2 Choosing your storage engine

As Graph Manager is internally used by the recorder to store crawled pages, you can choose between different storage
engines.

We can set the storage engine with the RECORDER_STORAGE_ENGINE setting:

RECORDER_STORAGE_ENGINE = 'sqlite:///my_record.db'

You can also choose to reset database tables or just reset data with this settings:

RECORDER_STORAGE_DROP_ALL_TABLES = True
RECORDER_STORAGE_CLEAR_CONTENT = True

3.3. Recording a Scrapy crawl 51

https://code.google.com/p/pydot/
http://www.graphviz.org/
http://doc.scrapy.org/en/latest/topics/downloader-middleware.html
http://doc.scrapy.org/en/latest/topics/settings.html#std:setting-SPIDER_MIDDLEWARES
http://doc.scrapy.org/en/latest/topics/settings.html#std:setting-DOWNLOADER_MIDDLEWARES
http://doc.scrapy.org/en/latest/topics/settings.html#std:setting-DOWNLOADER_MIDDLEWARES

Frontera Documentation, Release 0.6.0

3.3.3 Running the Crawl

Just run your Scrapy spider as usual from the command line:

scrapy crawl myspider

Once it’s finished you should have the recording available and ready for use.

In case you need to disable recording, you can do it by overriding the RECORDER_ENABLED setting:

scrapy crawl myspider -s RECORDER_ENABLED=False

3.3.4 Recorder settings

Here’s a list of all available Scrapy Recorder settings, in alphabetical order, along with their default values and the
scope where they apply.

RECORDER_ENABLED

Default: True

Activate or deactivate recording middlewares.

RECORDER_STORAGE_CLEAR_CONTENT

Default: True

Deletes table content from storage database in Graph Manager.

RECORDER_STORAGE_DROP_ALL_TABLES

Default: True

Drop storage database tables in Graph Manager.

RECORDER_STORAGE_ENGINE

Default: None

Sets Graph Manager storage engine used to store the recording.

3.4 Fine tuning of Frontera cluster

3.4.1 Why crawling speed is so low?

Search for a bottleneck.

• All requests are targeted towards a few websites.

• DNS resolution (see DNS Service article),

52 Chapter 3. Advanced usage

Frontera Documentation, Release 0.6.0

• strategy worker performance,

• db worker batch generation insufficiency.

• HBase response times are too high,

• Network within cluster is overloaded.

3.4.2 Tuning HBase

• Increase block cache in HBase.

• Put Thrift server on each HBase region server and spread load from SW to Thrift.

• Enable Snappy compression (see HBASE_USE_SNAPPY).

3.4.3 Tuning Kafka

• Decrease the log size to minimum and optimize the system to avoid storing in Kafka huge volumes of data.
Once data was written it should be consumed as fast as possible.

• Use SSD or even RAM storage for Kafka logs,

• Enable Snappy compression for Kafka.

3.4.4 Flow control between various components

The MAX_NEXT_REQUESTS is used for controlling the batch size. In spiders config it controls how much items will
be consumed per one get_next_requests call. At the same time in DB worker config it sets count of items to
generate per partition. When setting these parameters keep in mind:

• DB worker and spider values have to be consistent to avoid overloading of message bus and loosing messages.
In other words, DB worker have to produce slightly more than consumed by spiders, because the spider should
still be able to fetch new pages even though the DB worker has not pushed a new batch yet.

• Spider consumption rate depends on many factors: internet connection latency, amount of spider pars-
ing/scraping work, delays and auto throttling settings, usage of proxies, etc.

• Keep spider queue always full to prevent spider idling.

• General recommendation is to set DB worker value 2-4 times bigger than spiders.

• Batch size shouldn’t be big to not generate too much load on backend, and allow system quickly react on queue
changes.

• Watch out warnings about lost messages.

3.5 DNS Service

Along with what was mentioned in Prerequisites you may need also a dedicated DNS Service with caching. Especially,
if your crawler is expected to generate substantial number of DNS queries. It is true for breadth-first crawling, or any
other strategies, implying accessing large number of websites, within short period of time.

Because of huge load DNS service may get blocked by your network provider eventually.

There are two options for DNS strategy:

• Recursive DNS resolution,

3.5. DNS Service 53

Frontera Documentation, Release 0.6.0

• using upstream servers (massive DNS caches like OpenDNS or Verizon).

The second is still prone to blocking.

There is good DNS server software https://www.unbound.net/ released by NLnet Labs. It allows to choose one of
above mentioned strategies and maintain your local DNS cache.

Have a look at Scrapy options REACTOR_THREADPOOL_MAXSIZE and DNS_TIMEOUT.

What is a Crawl Frontier? Learn Crawl Frontier theory.

Graph Manager Define fake crawlings for websites to test your frontier.

Recording a Scrapy crawl Create Scrapy crawl recordings and reproduce them later.

Fine tuning of Frontera cluster Cluster deployment and fine tuning information.

DNS Service Few words about DNS service setup.

54 Chapter 3. Advanced usage

https://www.unbound.net/

CHAPTER 4

Developer documentation

4.1 Architecture overview

This document describes the Frontera Manager pipeline, distributed components and how they interact.

4.1.1 Single process

The following diagram shows an architecture of the Frontera pipeline with its components (referenced by numbers)
and an outline of the data flow that takes place inside the system. A brief description of the components is included
below with links for more detailed information about them. The data flow is also described below.

Components

Fetcher

The Fetcher (2) is responsible for fetching web pages from the sites (1) and feeding them to the frontier which manages
what pages should be crawled next.

Fetcher can be implemented using Scrapy or any other crawling framework/system as the framework offers a generic
frontier functionality.

In distributed run mode Fetcher is replaced with message bus producer from Frontera Manager side and consumer
from Fetcher side.

55

http://scrapy.org/

Frontera Documentation, Release 0.6.0

Frontera API / Manager

The main entry point to Frontera API (3) is the FrontierManager object. Frontier users, in our case the Fetcher
(2), will communicate with the frontier through it.

For more information see Frontera API.

Middlewares

Frontier middlewares (4) are specific hooks that sit between the Manager (3) and the Backend (5). These middlewares
process Request and Response objects when they pass to and from the Frontier and the Backend. They provide a
convenient mechanism for extending functionality by plugging custom code. Canonical URL solver is a specific case
of middleware responsible for substituting non-canonical document URLs wiht canonical ones.

For more information see Middlewares and Canonical URL Solver

Backend

The frontier Backend (5) is where the crawling logic/policies lies. It’s responsible for receiving all the crawl info and
selecting the next pages to be crawled. Backend is meant to be operating on higher level, and Queue, Metadata
and States objects are responsible for low-level storage communication code.

May require, depending on the logic implemented, a persistent storage (6) to manage Request and Response
objects info.

For more information see Backends.

Data Flow

The data flow in Frontera is controlled by the Frontier Manager, all data passes through the manager-middlewares-
backend scheme and goes like this:

1. The frontier is initialized with a list of seed requests (seed URLs) as entry point for the crawl.

2. The fetcher asks for a list of requests to crawl.

3. Each url is fetched and the frontier is notified back of the crawl result as well of the extracted data the page
contains. If anything went wrong during the crawl, the frontier is also informed of it.

Once all urls have been crawled, steps 2-3 are repeated until crawl of frontier end condition is reached. Each loop
(steps 2-3) repetition is called a frontier iteration.

4.1.2 Distributed

The same Frontera Manager pipeline is used in all Frontera processes when running in distributed mode.

Overall system forms a closed circle and all the components are working as daemons in infinite cycles. There is
a message bus responsible for transmitting messages between components, persistent storage and fetchers (when
combined with extraction these processes called spiders). There is a transport and storage layer abstractions, so one
can plug it’s own transport. Distributed backend run mode has instances of three types:

• Spiders or fetchers, implemented using Scrapy (sharded). Responsible for resolving DNS queries, getting
content from the Internet and doing link (or other data) extraction from content.

• Strategy workers (sharded). Run the crawling strategy code: scoring the links, deciding if link needs to be
scheduled and when to stop crawling.

56 Chapter 4. Developer documentation

Frontera Documentation, Release 0.6.0

• DB workers (sharded). Store all the metadata, including scores and content, and generating new batches for
downloading by spiders.

Where sharded means component consumes messages of assigned partition only, e.g. processes certain share of the
stream, and replicated is when components consume stream regardless of partitioning.

Such design allows to operate online. Crawling strategy can be changed without having to stop the crawl. Also
crawling strategy can be implemented as a separate module; containing logic for checking the crawling stopping
condition, URL ordering, and scoring model.

Frontera is polite to web hosts by design and each host is downloaded by no more than one spider process. This is
achieved by stream partitioning.

Data flow

Let’s start with spiders. The seed URLs defined by the user inside spiders are propagated to strategy workers and DB
workers by means of spider log stream. Strategy workers decide which pages to crawl using state cache, assigns a
score to each page and sends the results to the scoring log stream.

DB Worker stores all kinds of metadata, including content and scores. Also DB worker checks for the spider’s
consumers offsets and generates new batches if needed and sends them to spider feed stream. Spiders consume
these batches, downloading each page and extracting links from them. The links are then sent to the ‘Spider Log’
stream where they are stored and scored. That way the flow repeats indefinitely.

4.2 Frontera API

This section documents the Frontera core API, and is intended for developers of middlewares and backends.

4.2. Frontera API 57

Frontera Documentation, Release 0.6.0

4.2.1 Frontera API / Manager

The main entry point to Frontera API is the FrontierManager object, passed to middlewares and backend through
the from_manager class method. This object provides access to all Frontera core components, and is the only way for
middlewares and backend to access them and hook their functionality into Frontera.

The FrontierManager is responsible for loading the installed middlewares and backend, as well as for managing
the data flow around the whole frontier.

4.2.2 Loading from settings

Although FrontierManager can be initialized using parameters the most common way of doing this is using
Frontera Settings.

This can be done through the from_settings class method, using either a string path:

>>> from frontera import FrontierManager
>>> frontier = FrontierManager.from_settings('my_project.frontier.settings')

or a BaseSettings object instance:

>>> from frontera import FrontierManager, Settings
>>> settings = Settings()
>>> settings.MAX_PAGES = 0
>>> frontier = FrontierManager.from_settings(settings)

It can also be initialized without parameters, in this case the frontier will use the default settings:

>>> from frontera import FrontierManager, Settings
>>> frontier = FrontierManager.from_settings()

4.2.3 Frontier Manager

class frontera.core.manager.FrontierManager(request_model, response_model, back-
end, middlewares=None, test_mode=False,
max_requests=0, max_next_requests=0,
auto_start=True, settings=None, canoni-
calsolver=None, db_worker=False, strat-
egy_worker=False)

The FrontierManager object encapsulates the whole frontier, providing an API to interact with. It’s also
responsible of loading and communicating all different frontier components.

Parameters

• request_model (object/string) – The Request object to be used by the fron-
tier.

• response_model (object/string) – The Response object to be used by the
frontier.

• backend (object/string) – The Backend object to be used by the frontier.

• middlewares (list) – A list of Middleware objects to be used by the frontier.

• test_mode (bool) – Activate/deactivate frontier test mode.

58 Chapter 4. Developer documentation

Frontera Documentation, Release 0.6.0

• max_requests (int) – Number of pages after which the frontier would stop (See
Finish conditions).

• max_next_requests (int) – Maximum number of requests returned by
get_next_requests method.

• auto_start (bool) – Activate/deactivate automatic frontier start (See start-
ing/stopping the frontier).

• settings (object/string) – The Settings object used by the frontier.

• canonicalsolver (object/string) – The CanonicalSolver object to be
used by frontier.

• db_worker (bool) – True if class is instantiated in DB worker environment

• strategy_worker (bool) – True if class is instantiated in strategy worker environ-
ment

Attributes

request_model
The Request object to be used by the frontier. Can be defined with REQUEST_MODEL setting.

response_model
The Response object to be used by the frontier. Can be defined with RESPONSE_MODEL setting.

backend
The Backend object to be used by the frontier. Can be defined with BACKEND setting.

middlewares
A list of Middleware objects to be used by the frontier. Can be defined with MIDDLEWARES setting.

test_mode
Boolean value indicating if the frontier is using frontier test mode. Can be defined with TEST_MODE
setting.

max_requests
Number of pages after which the frontier would stop (See Finish conditions). Can be defined with
MAX_REQUESTS setting.

max_next_requests
Maximum number of requests returned by get_next_requests method. Can be defined with
MAX_NEXT_REQUESTS setting.

auto_start
Boolean value indicating if automatic frontier start is activated. See starting/stopping the frontier. Can be
defined with AUTO_START setting.

settings
The Settings object used by the frontier.

iteration
Current frontier iteration.

n_requests
Number of accumulated requests returned by the frontier.

finished
Boolean value indicating if the frontier has finished. See Finish conditions.

API Methods

4.2. Frontera API 59

Frontera Documentation, Release 0.6.0

start()
Notifies all the components of the frontier start. Typically used for initializations (See starting/stopping
the frontier).

Returns None.

stop()
Notifies all the components of the frontier stop. Typically used for finalizations (See starting/stopping the
frontier).

Returns None.

add_seeds(seeds)
Adds a list of seed requests (seed URLs) as entry point for the crawl.

Parameters seeds (list) – A list of Request objects.

Returns None.

get_next_requests(max_next_requests=0, **kwargs)
Returns a list of next requests to be crawled. Optionally a maximum number of pages can be
passed. If no value is passed, FrontierManager.max_next_requests will be used instead.
(MAX_NEXT_REQUESTS setting).

Parameters

• max_next_requests (int) – Maximum number of requests to be returned by
this method.

• kwargs (dict) – Arbitrary arguments that will be passed to backend.

Returns list of Request objects.

page_crawled(response)
Informs the frontier about the crawl result.

Parameters response (object) – The Response object for the crawled page.

Returns None.

request_error(request, error)
Informs the frontier about a page crawl error. An error identifier must be provided.

Parameters

• request (object) – The crawled with error Request object.

• error (string) – A string identifier for the error.

Returns None.

Class Methods

classmethod from_settings(settings=None, db_worker=False, strategy_worker=False)
Returns a FrontierManager instance initialized with the passed settings argument. If no settings is
given, frontier default settings are used.

4.2.4 Starting/Stopping the frontier

Sometimes, frontier components need to perform initialization and finalization operations. The frontier mechanism
to notify the different components of the frontier start and stop is done by the start() and stop() methods
respectively.

60 Chapter 4. Developer documentation

Frontera Documentation, Release 0.6.0

By default auto_start frontier value is activated, this means that components will be notified once the
FrontierManager object is created. If you need to have more fine control of when different components are
initialized, deactivate auto_start and manually call frontier API start() and stop() methods.

Note: Frontier stop() method is not automatically called when auto_start is active (because frontier is not
aware of the crawling state). If you need to notify components of frontier end you should call the method manually.

4.2.5 Frontier iterations

Once frontier is running, the usual process is the one described in the data flow section.

Crawler asks the frontier for next pages using the get_next_requests() method. Each time the frontier returns
a non empty list of pages (data available), is what we call a frontier iteration.

Current frontier iteration can be accessed using the iteration attribute.

4.2.6 Finishing the frontier

Crawl can be finished either by the Crawler or by the Frontera. Frontera will finish when a maximum number of pages
is returned. This limit is controlled by the max_requests attribute (MAX_REQUESTS setting).

If max_requests has a value of 0 (default value) the frontier will continue indefinitely.

Once the frontier is finished, no more pages will be returned by the get_next_requests method and finished
attribute will be True.

4.2.7 Component objects

class frontera.core.components.Component
Interface definition for a frontier component The Component object is the base class for frontier Middleware
and Backend objects.

FrontierManager communicates with the active components using the hook methods listed below.

Implementations are different for Middleware and Backend objects, therefore methods are not fully de-
scribed here but in their corresponding section.

Attributes

name
The component name

Abstract methods

frontier_start()
Called when the frontier starts, see starting/stopping the frontier.

frontier_stop()
Called when the frontier stops, see starting/stopping the frontier.

add_seeds(seeds)
This method is called when new seeds are added to the frontier.

Parameters seeds (list) – A list of Request objects.

page_crawled(response)
This method is called every time a page has been crawled.

4.2. Frontera API 61

Frontera Documentation, Release 0.6.0

Parameters response (object) – The Response object for the crawled page.

request_error(page, error)
This method is called each time an error occurs when crawling a page.

Parameters

• request (object) – The crawled with error Request object.

• error (string) – A string identifier for the error.

Class Methods

classmethod from_manager(manager)
Class method called from FrontierManager passing the manager itself.

Example of usage:

def from_manager(cls, manager):
return cls(settings=manager.settings)

4.2.8 Test mode

In some cases while testing, frontier components need to act in a different way than they usually do (for instance
domain middleware accepts non valid URLs like ’A1’ or ’B1’ when parsing domain urls in test mode).

Components can know if the frontier is in test mode via the boolean test_mode attribute.

4.2.9 Other ways of using the frontier

Communication with the frontier can also be done through other mechanisms such as an HTTP API or a queue system.
These functionalities are not available for the time being, but hopefully will be included in future versions.

4.3 Using the Frontier with Requests

To integrate frontier with Requests library, there is a RequestsFrontierManager class available.

This class is just a simple FrontierManager wrapper that uses Requests objects (Request/Response) and
converts them from and to frontier ones for you.

Use it in the same way that FrontierManager, initialize it with your settings and use Requests Request and
Response objects. get_next_requests method will return a Requests Request object.

An example:

import re

import requests

from urlparse import urljoin

from frontera.contrib.requests.manager import RequestsFrontierManager
from frontera import Settings

SETTINGS = Settings()
SETTINGS.BACKEND = 'frontera.contrib.backends.memory.FIFO'
SETTINGS.LOGGING_MANAGER_ENABLED = True

62 Chapter 4. Developer documentation

http://docs.python-requests.org/en/latest/
http://docs.python-requests.org/en/latest/
http://docs.python-requests.org/en/latest/
http://docs.python-requests.org/en/latest/

Frontera Documentation, Release 0.6.0

SETTINGS.LOGGING_BACKEND_ENABLED = True
SETTINGS.MAX_REQUESTS = 100
SETTINGS.MAX_NEXT_REQUESTS = 10

SEEDS = [
'http://www.imdb.com',

]

LINK_RE = re.compile(r'href="(.*?)"')

def extract_page_links(response):
return [urljoin(response.url, link) for link in LINK_RE.findall(response.text)]

if __name__ == '__main__':

frontier = RequestsFrontierManager(SETTINGS)
frontier.add_seeds([requests.Request(url=url) for url in SEEDS])
while True:

next_requests = frontier.get_next_requests()
if not next_requests:

break
for request in next_requests:

try:
response = requests.get(request.url)
links = [requests.Request(url=url) for url in extract_page_links(response)]
frontier.page_crawled(response=response)
frontier.links_extracted(request=request, links=links)

except requests.RequestException, e:
error_code = type(e).__name__
frontier.request_error(request, error_code)

4.4 Examples

The project repo includes an examples folder with some scripts and projects using Frontera:

examples/
requests/
general-spider/
scrapy_recording/
scripts/

• requests: Example script with Requests library.

• general-spider: Scrapy integration example project.

• scrapy_recording: Scrapy Recording example project.

• scripts: Some simple scripts.

Note: This examples may need to install additional libraries in order to work.

You can install them using pip:

pip install -r requirements/examples.txt

4.4. Examples 63

http://docs.python-requests.org/en/latest/

Frontera Documentation, Release 0.6.0

4.4.1 requests

A simple script that follow all the links from a site using Requests library.

How to run it:

python links_follower.py

4.4.2 general-spider

A simple Scrapy spider that follows all the links from the seeds. Contains configuration files for single process,
distributed spider and backends run modes.

See Quick start distributed mode for how to run it.

4.4.3 cluster

Is a large scale crawling application for performing broad crawls with number of pages per host limit. It preserves
each host state in HBase and uses it when schedule new requests for downloading. Designed for running in distributed
backend run mode using HBase.

4.4.4 scrapy_recording

A simple script with a spider that follows all the links for a site, recording crawling results.

How to run it:

scrapy crawl recorder

4.4.5 scripts

Some sample scripts on how to use different frontier components.

4.5 Tests

Frontera tests are implemented using the pytest tool.

You can install pytest and the additional required libraries used in the tests using pip:

pip install -r requirements/tests.txt

64 Chapter 4. Developer documentation

http://docs.python-requests.org/en/latest/
http://pytest.org/latest/
http://pytest.org/latest/

Frontera Documentation, Release 0.6.0

4.5.1 Running tests

To run all tests go to the root directory of source code and run:

py.test

4.5.2 Writing tests

All functionality (including new features and bug fixes) must include a test case to check that it works as expected, so
please include tests for your patches if you want them to get accepted sooner.

4.5.3 Backend testing

A base pytest class for Backend testing is provided: BackendTest

class tests.backends.BackendTest
A simple pytest base class with helper methods for Backend testing.

get_settings()
Returns backend settings

get_frontier()
Returns frontierManager object

setup_backend(method)
Setup method called before each test method call

teardown_backend(method)
Teardown method called after each test method call

Let’s say for instance that you want to test to your backend MyBackend and create a new frontier instance for each
test method call, you can define a test class like this:

class TestMyBackend(backends.BackendTest):

backend_class = 'frontera.contrib.backend.abackend.MyBackend'

def test_one(self):
frontier = self.get_frontier()
...

def test_two(self):
frontier = self.get_frontier()
...

...

And let’s say too that it uses a database file and you need to clean it before and after each test:

class TestMyBackend(backends.BackendTest):

backend_class = 'frontera.contrib.backend.abackend.MyBackend'

def setup_backend(self, method):
self._delete_test_db()

4.5. Tests 65

http://pytest.org/latest/

Frontera Documentation, Release 0.6.0

def teardown_backend(self, method):
self._delete_test_db()

def _delete_test_db(self):
try:

os.remove('mytestdb.db')
except OSError:

pass

def test_one(self):
frontier = self.get_frontier()
...

def test_two(self):
frontier = self.get_frontier()
...

...

4.5.4 Testing backend sequences

To test Backend crawling sequences you can use the BackendSequenceTest class.

class tests.backends.BackendSequenceTest
A pytest base class for testing Backend crawling sequences.

get_sequence(site_list, max_next_requests, downloader_simulator=<frontera.utils.tester.BaseDownloaderSimulator
object>, frontier_tester=<class ‘frontera.utils.tester.FrontierTester’>)

Returns an Frontera iteration sequence from a site list

Parameters

• site_list (list) – A list of sites to use as frontier seeds.

• max_next_requests (int) – Max next requests for the frontier.

assert_sequence(site_list, expected_sequence, max_next_requests)
Asserts that crawling sequence is the one expected

Parameters

• site_list (list) – A list of sites to use as frontier seeds.

• max_next_requests (int) – Max next requests for the frontier.

BackendSequenceTest class will run a complete crawl of the passed site graphs and return the sequence used by
the backend for visiting the different pages.

Let’s say you want to test to a backend that sort pages using alphabetic order. You can define the following test:

class TestAlphabeticSortBackend(backends.BackendSequenceTest):

backend_class = 'frontera.contrib.backend.abackend.AlphabeticSortBackend'

SITE_LIST = [
[

('C', []),
('B', []),
('A', []),

],

66 Chapter 4. Developer documentation

Frontera Documentation, Release 0.6.0

]

def test_one(self):
Check sequence is the expected one
self.assert_sequence(site_list=self.SITE_LIST,

expected_sequence=['A', 'B', 'C'],
max_next_requests=0)

def test_two(self):
Get sequence and work with it
sequence = self.get_sequence(site_list=SITE_LIST,

max_next_requests=0)
assert len(sequence) > 2

...

4.5.5 Testing basic algorithms

If your backend uses any of the basic algorithms logics, you can just inherit the correponding test base class for each
logic and sequences will be automatically tested for it:

from tests import backends

class TestMyBackendFIFO(backends.FIFOBackendTest):
backend_class = 'frontera.contrib.backends.abackend.MyBackendFIFO'

class TestMyBackendLIFO(backends.LIFOBackendTest):
backend_class = 'frontera.contrib.backends.abackend.MyBackendLIFO'

class TestMyBackendDFS(backends.DFSBackendTest):
backend_class = 'frontera.contrib.backends.abackend.MyBackendDFS'

class TestMyBackendBFS(backends.BFSBackendTest):
backend_class = 'frontera.contrib.backends.abackend.MyBackendBFS'

class TestMyBackendRANDOM(backends.RANDOMBackendTest):
backend_class = 'frontera.contrib.backends.abackend.MyBackendRANDOM'

4.6 Logging

Frontera is using Python native logging system. This allows a user to manage logged messages by writing a logger
configuration file (see LOGGING_CONFIG) or configuring logging system during runtime.

Logger configuration syntax is here https://docs.python.org/2/library/logging.config.html

4.6. Logging 67

https://docs.python.org/2/library/logging.config.html

Frontera Documentation, Release 0.6.0

4.6.1 Loggers used

• kafka

• hbase.backend

• hbase.states

• hbase.queue

• sqlalchemy.revisiting.queue

• sqlalchemy.metadata

• sqlalchemy.states

• sqlalchemy.queue

• offset-fetcher

• messagebus-backend

• cf-server

• db-worker

• strategy-worker

• messagebus.kafka

• memory.queue

• memory.dequequeue

• memory.states

• manager.components

• manager

• frontera.contrib.scrapy.schedulers.FronteraScheduler

4.7 Testing a Frontier

Frontier Tester is a helper class for easy frontier testing.

Basically it runs a fake crawl against a Frontier, crawl info is faked using a Graph Manager instance.

4.7.1 Creating a Frontier Tester

FrontierTester needs a Graph Manager and a FrontierManager instances:

>>> from frontera import FrontierManager, FrontierTester
>>> from frontera.utils import graphs
>>> graph = graphs.Manager('sqlite:///graph.db') # Crawl fake data loading
>>> frontier = FrontierManager.from_settings() # Create frontier from default settings
>>> tester = FrontierTester(frontier, graph)

68 Chapter 4. Developer documentation

Frontera Documentation, Release 0.6.0

4.7.2 Running a Test

The tester is now initialized, to run the test just call the method run:

>>> tester.run()

When run method is called the tester will:

1. Add all the seeds from the graph.

2. Ask the frontier about next pages.

3. Fake page response and inform the frontier about page crawl and its links.

Steps 1 and 2 are repeated until crawl or frontier ends.

Once the test is finished, the crawling page sequence is available as a list of frontier Request objects.

4.7.3 Test Parameters

In some test cases you may want to add all graph pages as seeds, this can be done with the parameter
add_all_pages:

>>> tester.run(add_all_pages=True)

Maximum number of returned pages per get_next_requests call can be set using frontier settings, but also can
be modified when creating the FrontierTester with the max_next_pages argument:

>>> tester = FrontierTester(frontier, graph, max_next_pages=10)

4.7.4 An example of use

A working example using test data from graphs and basic backends:

from frontera import FrontierManager, Settings, FrontierTester, graphs

def test_backend(backend):
Graph
graph = graphs.Manager()
graph.add_site_list(graphs.data.SITE_LIST_02)

Frontier
settings = Settings()
settings.BACKEND = backend
settings.TEST_MODE = True
frontier = FrontierManager.from_settings(settings)

Tester
tester = FrontierTester(frontier, graph)
tester.run(add_all_pages=True)

Show crawling sequence
print '-'*40
print frontier.backend.name

4.7. Testing a Frontier 69

Frontera Documentation, Release 0.6.0

print '-'*40
for page in tester.sequence:

print page.url

if __name__ == '__main__':
test_backend('frontera.contrib.backends.memory.heapq.FIFO')
test_backend('frontera.contrib.backends.memory.heapq.LIFO')
test_backend('frontera.contrib.backends.memory.heapq.BFS')
test_backend('frontera.contrib.backends.memory.heapq.DFS')

4.8 F.A.Q.

4.8.1 How to download efficiently in parallel?

Typically the design of URL ordering implies fetching many URLs from the same domain. If crawling process needs
to be polite it has to preserve some delay and rate of requests. From the other side, there are downloaders which can
afford downloading many URLs (say 100) at once, in parallel. So, flooding of the URLs from the same domain leads
to inefficient waste of downloader connection pool resources.

Here is a short example. Imagine, we have a queue of 10K URLs from many different domains. Our task is to fetch
it as fast as possible. During downloading we want to be polite and limit per host RPS. At the same time we have
a prioritization which tends to group URLs from the same domain. When crawler will be requesting for batches of
URLs to fetch, it will be getting hundreds of URLs from the same host. The downloader will not be able to fetch
them quickly because of RPS limit and delay. Therefore, picking top URLs from the queue leeds us to the time waste,
because connection pool of downloader most of the time underused.

The solution is to supply Frontera backend with hostname/ip (usually, but not necessary) usage in downloader. We have
a keyword arguments in method get_next_requests for passing these stats, to the Frontera backend. Information
of any kind can be passed there. This arguments are usually set outside of Frontera, and then passed to CF via
FrontierManagerWrapper subclass to backend.

4.9 Contribution guidelines

• Use Frontera google group for all questions and discussions.

• Use Github repo pull request for submitting patches.

• Use Github repo issues for issues Frontera could benefit from in the future. Please don’t put your own problems
running Frontera there, instead use a google group.

We’re always happy to accept well-thought solution with documentation and tests.

4.10 Glossary

spider log A stream of encoded messages from spiders. Each message is product of extraction from document
content. Most of the time it is links, scores, classification results.

scoring log Contains score updating events and scheduling flag (if link needs to be scheduled for download) going
from strategy worker to db worker.

spider feed A stream of messages from db worker to spiders containing new batches of documents to crawl.

70 Chapter 4. Developer documentation

https://groups.google.com/a/scrapinghub.com/forum/#!forum/frontera
https://github.com/scrapinghub/frontera

Frontera Documentation, Release 0.6.0

strategy worker Special type of worker, running the crawling strategy code: scoring the links, deciding if link needs
to be scheduled (consults state cache) and when to stop crawling. That type of worker is sharded.

db worker Is responsible for communicating with storage DB, and mainly saving metadata and content along with
retrieving new batches to download.

state cache In-memory data structure containing information about state of documents, whatever they were scheduled
or not. Periodically synchronized with persistent storage.

message bus Transport layer abstraction mechanism. Provides interface for transport layer abstraction and several
implementations.

Architecture overview See how Frontera works and its different components.

Frontera API Learn how to use the frontier.

Using the Frontier with Requests Learn how to use Frontera with Requests.

Examples Some example projects and scripts using Frontera.

Tests How to run and write Frontera tests.

Logging A list of loggers for use with python native logging system.

Testing a Frontier Test your frontier in an easy way.

F.A.Q. Frequently asked questions.

Contribution guidelines HOWTO contribute.

Glossary Glossary of terms.

4.10. Glossary 71

Frontera Documentation, Release 0.6.0

72 Chapter 4. Developer documentation

Python Module Index

f
frontera.contrib.backends.remote.codecs.json,

27
frontera.contrib.backends.remote.codecs.msgpack,

27

73

Frontera Documentation, Release 0.6.0

74 Python Module Index

Index

A
add_seeds() (frontera.core.components.Backend

method), 21
add_seeds() (frontera.core.components.Component

method), 61
add_seeds() (frontera.core.components.Metadata

method), 22
add_seeds() (frontera.core.components.Middleware

method), 16
add_seeds() (frontera.core.manager.FrontierManager

method), 60
add_seeds() (frontera.worker.strategies.BaseCrawlingStrategy

method), 28
assert_sequence() (tests.backends.BackendSequenceTest

method), 66
AUTO_START

setting, 33
auto_start (frontera.core.manager.FrontierManager

attribute), 59

B
BACKEND

setting, 33
Backend (class in frontera.core.components), 20
backend (frontera.core.manager.FrontierManager at-

tribute), 59
BackendSequenceTest (class in tests.backends), 66
BackendTest (class in tests.backends), 65
BaseCrawlingStrategy (class in fron-

tera.worker.strategies), 27
BaseDecoder (class in frontera.core.codec), 27
BaseEncoder (class in frontera.core.codec), 26
BasicCanonicalSolver (class in fron-

tera.contrib.canonicalsolvers.basic), 20
BC_MAX_REQUESTS_PER_HOST

setting, 33
BC_MIN_HOSTS

setting, 33
BC_MIN_REQUESTS

setting, 33

body (frontera.core.models.Request attribute), 14
body (frontera.core.models.Response attribute), 14

C
CANONICAL_SOLVER

setting, 34
close() (frontera.worker.strategies.BaseCrawlingStrategy

method), 28
CommonBackend (class in frontera.contrib.backends), 23
Component (class in frontera.core.components), 61
cookies (frontera.core.models.Request attribute), 14
count() (frontera.core.components.Queue method), 22
CRAWLING_STRATEGY

setting, 34
CrawlPage (built-in class), 47

D
db worker, 71
db_worker() (frontera.core.components.DistributedBackend

class method), 22
decode() (frontera.core.codec.BaseDecoder method), 27
decode_request() (frontera.core.codec.BaseDecoder

method), 27
DELAY_ON_EMPTY

setting, 34
DistributedBackend (class in frontera.core.components),

21
DOMAIN_FINGERPRINT_FUNCTION

setting, 37
DomainFingerprintMiddleware (class in fron-

tera.contrib.middlewares.fingerprint), 19
DomainMiddleware (class in fron-

tera.contrib.middlewares.domain), 17

E
encode_add_seeds() (frontera.core.codec.BaseEncoder

method), 26
encode_new_job_id() (frontera.core.codec.BaseEncoder

method), 26
encode_offset() (frontera.core.codec.BaseEncoder

method), 27

75

Frontera Documentation, Release 0.6.0

encode_page_crawled() (fron-
tera.core.codec.BaseEncoder method), 26

encode_request() (frontera.core.codec.BaseEncoder
method), 26

encode_request_error() (fron-
tera.core.codec.BaseEncoder method), 26

encode_update_score() (fron-
tera.core.codec.BaseEncoder method), 26

F
fetch() (frontera.core.components.States method), 23
finished (frontera.core.manager.FrontierManager at-

tribute), 59
finished() (frontera.core.components.Backend method),

20
finished() (frontera.worker.strategies.BaseCrawlingStrategy

method), 28
flush() (frontera.core.components.States method), 23
from_manager() (frontera.core.components.Backend

method), 21
from_manager() (frontera.core.components.Component

class method), 62
from_manager() (frontera.core.components.Middleware

method), 17
from_settings() (frontera.core.manager.FrontierManager

class method), 60
from_worker() (frontera.worker.strategies.BaseCrawlingStrategy

class method), 28
frontera.contrib.backends.memory.BASE (built-in class),

24
frontera.contrib.backends.memory.BFS (built-in class),

24
frontera.contrib.backends.memory.DFS (built-in class),

24
frontera.contrib.backends.memory.FIFO (built-in class),

24
frontera.contrib.backends.memory.LIFO (built-in class),

24
frontera.contrib.backends.memory.RANDOM (built-in

class), 24
frontera.contrib.backends.remote.codecs.json (module),

27
frontera.contrib.backends.remote.codecs.msgpack (mod-

ule), 27
frontera.contrib.backends.sqlalchemy.BASE (built-in

class), 24
frontera.contrib.backends.sqlalchemy.BFS (built-in

class), 24
frontera.contrib.backends.sqlalchemy.DFS (built-in

class), 24
frontera.contrib.backends.sqlalchemy.FIFO (built-in

class), 24
frontera.contrib.backends.sqlalchemy.LIFO (built-in

class), 24

frontera.contrib.backends.sqlalchemy.RANDOM (built-
in class), 24

frontera.contrib.backends.sqlalchemy.revisiting.Backend
(built-in class), 25

FRONTERA_SETTINGS
setting, 30

FRONTIER_GROUP
setting, 40

frontier_start() (frontera.core.components.Backend
method), 20

frontier_start() (frontera.core.components.Component
method), 61

frontier_start() (frontera.core.components.Middleware
method), 16

frontier_stop() (frontera.core.components.Backend
method), 20

frontier_stop() (frontera.core.components.Component
method), 61

frontier_stop() (frontera.core.components.Middleware
method), 16

FrontierManager (class in frontera.core.manager), 58

G
get_frontier() (tests.backends.BackendTest method), 65
get_next_requests() (frontera.core.components.Backend

method), 21
get_next_requests() (frontera.core.components.Queue

method), 22
get_next_requests() (fron-

tera.core.manager.FrontierManager method),
60

get_sequence() (tests.backends.BackendSequenceTest
method), 66

get_settings() (tests.backends.BackendTest method), 65

H
HBASE_BATCH_SIZE

setting, 38
HBASE_DROP_ALL_TABLES

setting, 39
HBASE_METADATA_TABLE

setting, 39
HBASE_NAMESPACE

setting, 39
HBASE_QUEUE_TABLE

setting, 39
HBASE_STATE_CACHE_SIZE_LIMIT

setting, 39
HBASE_THRIFT_HOST

setting, 39
HBASE_THRIFT_PORT

setting, 39
HBASE_USE_FRAMED_COMPACT

setting, 39

76 Index

Frontera Documentation, Release 0.6.0

HBASE_USE_SNAPPY
setting, 39

HBaseBackend (class in fron-
tera.contrib.backends.hbase), 25

headers (frontera.core.models.Request attribute), 14
headers (frontera.core.models.Response attribute), 15
hostname_local_fingerprint() (in module fron-

tera.utils.fingerprint), 18

I
id (CrawlPage attribute), 47
INCOMING_TOPIC

setting, 40
is_seed (CrawlPage attribute), 47
iteration (frontera.core.manager.FrontierManager at-

tribute), 59

K
KAFKA_CODEC_LEGACY

setting, 34
KAFKA_GET_TIMEOUT

setting, 34
KAFKA_LOCATION

setting, 40

L
links (CrawlPage attribute), 47
LOGGING_CONFIG

setting, 35

M
MAX_NEXT_REQUESTS

setting, 35
max_next_requests (fron-

tera.core.manager.FrontierManager attribute),
59

MAX_REQUESTS
setting, 35

max_requests (frontera.core.manager.FrontierManager
attribute), 59

message bus, 71
MESSAGE_BUS

setting, 35
MESSAGE_BUS_CODEC

setting, 35
MessageBus (class in fron-

tera.contrib.messagebus.kafkabus), 26
MessageBus (class in fron-

tera.contrib.messagebus.zeromq), 25
MessageBusBackend (class in fron-

tera.contrib.backends.remote.messagebus),
25

meta (frontera.core.models.Request attribute), 14

meta (frontera.core.models.Response attribute), 15
Metadata (class in frontera.core.components), 22
metadata (frontera.core.components.Backend attribute),

21
method (frontera.core.models.Request attribute), 14
Middleware (class in frontera.core.components), 16
MIDDLEWARES

setting, 35
middlewares (frontera.core.manager.FrontierManager at-

tribute), 59

N
n_requests (frontera.core.manager.FrontierManager at-

tribute), 59
name (frontera.core.components.Component attribute),

61
NEW_BATCH_DELAY

setting, 35

O
OUTGOING_TOPIC

setting, 40
OVERUSED_SLOT_FACTOR

setting, 36

P
page_crawled() (frontera.core.components.Backend

method), 21
page_crawled() (frontera.core.components.Component

method), 61
page_crawled() (frontera.core.components.Metadata

method), 22
page_crawled() (frontera.core.components.Middleware

method), 16
page_crawled() (frontera.core.manager.FrontierManager

method), 60
page_crawled() (frontera.worker.strategies.BaseCrawlingStrategy

method), 28
page_error() (frontera.worker.strategies.BaseCrawlingStrategy

method), 28

Q
Queue (class in frontera.core.components), 22
queue (frontera.core.components.Backend attribute), 21

R
RECORDER_ENABLED

setting, 52
RECORDER_STORAGE_CLEAR_CONTENT

setting, 52
RECORDER_STORAGE_DROP_ALL_TABLES

setting, 52
RECORDER_STORAGE_ENGINE

Index 77

Frontera Documentation, Release 0.6.0

setting, 52
referers (CrawlPage attribute), 47
Request (class in frontera.core.models), 14
request (frontera.core.models.Response attribute), 15
request_error() (frontera.core.components.Backend

method), 21
request_error() (frontera.core.components.Component

method), 62
request_error() (frontera.core.components.Metadata

method), 22
request_error() (frontera.core.components.Middleware

method), 17
request_error() (frontera.core.manager.FrontierManager

method), 60
REQUEST_MODEL

setting, 36
request_model (frontera.core.manager.FrontierManager

attribute), 59
Response (class in frontera.core.models), 14
RESPONSE_MODEL

setting, 36
response_model (frontera.core.manager.FrontierManager

attribute), 59

S
schedule() (frontera.core.components.Queue method), 22
scoring log, 70
SCORING_GROUP

setting, 40
SCORING_LOG_CONSUMER_BATCH_SIZE

setting, 34
SCORING_PARTITION_ID

setting, 36
SCORING_TOPIC

setting, 41
set_states() (frontera.core.components.States method), 23
setting

AUTO_START, 33
BACKEND, 33
BC_MAX_REQUESTS_PER_HOST, 33
BC_MIN_HOSTS, 33
BC_MIN_REQUESTS, 33
CANONICAL_SOLVER, 34
CRAWLING_STRATEGY, 34
DELAY_ON_EMPTY, 34
DOMAIN_FINGERPRINT_FUNCTION, 37
FRONTERA_SETTINGS, 30
FRONTIER_GROUP, 40
HBASE_BATCH_SIZE, 38
HBASE_DROP_ALL_TABLES, 39
HBASE_METADATA_TABLE, 39
HBASE_NAMESPACE, 39
HBASE_QUEUE_TABLE, 39
HBASE_STATE_CACHE_SIZE_LIMIT, 39

HBASE_THRIFT_HOST, 39
HBASE_THRIFT_PORT, 39
HBASE_USE_FRAMED_COMPACT, 39
HBASE_USE_SNAPPY, 39
INCOMING_TOPIC, 40
KAFKA_CODEC_LEGACY, 34
KAFKA_GET_TIMEOUT, 34
KAFKA_LOCATION, 40
LOGGING_CONFIG, 35
MAX_NEXT_REQUESTS, 35
MAX_REQUESTS, 35
MESSAGE_BUS, 35
MESSAGE_BUS_CODEC, 35
MIDDLEWARES, 35
NEW_BATCH_DELAY, 35
OUTGOING_TOPIC, 40
OVERUSED_SLOT_FACTOR, 36
RECORDER_ENABLED, 52
RECORDER_STORAGE_CLEAR_CONTENT, 52
RECORDER_STORAGE_DROP_ALL_TABLES,

52
RECORDER_STORAGE_ENGINE, 52
REQUEST_MODEL, 36
RESPONSE_MODEL, 36
SCORING_GROUP, 40
SCORING_LOG_CONSUMER_BATCH_SIZE, 34
SCORING_PARTITION_ID, 36
SCORING_TOPIC, 41
SPIDER_FEED_PARTITIONS, 36
SPIDER_LOG_CONSUMER_BATCH_SIZE, 34
SPIDER_LOG_PARTITIONS, 36
SPIDER_PARTITION_ID, 36
SQLALCHEMYBACKEND_CACHE_SIZE, 37
SQLALCHEMYBACKEND_CLEAR_CONTENT,

37
SQLALCHEMYBACK-

END_DROP_ALL_TABLES, 38
SQLALCHEMYBACKEND_ENGINE, 38
SQLALCHEMYBACKEND_ENGINE_ECHO, 38
SQLALCHEMYBACKEND_MODELS, 38
SQLALCHEMYBACK-

END_REVISIT_INTERVAL, 38
STATE_CACHE_SIZE, 36
STORE_CONTENT, 37
TEST_MODE, 37
TLDEXTRACT_DOMAIN_INFO, 37
URL_FINGERPRINT_FUNCTION, 37
ZMQ_ADDRESS, 40
ZMQ_BASE_PORT, 40

Settings (class in frontera.settings), 33
settings (frontera.core.manager.FrontierManager at-

tribute), 59
setup_backend() (tests.backends.BackendTest method),

65

78 Index

Frontera Documentation, Release 0.6.0

spider feed, 70
spider log, 70
SPIDER_FEED_PARTITIONS

setting, 36
SPIDER_LOG_CONSUMER_BATCH_SIZE

setting, 34
SPIDER_LOG_PARTITIONS

setting, 36
SPIDER_PARTITION_ID

setting, 36
SQLALCHEMYBACKEND_CACHE_SIZE

setting, 37
SQLALCHEMYBACKEND_CLEAR_CONTENT

setting, 37
SQLALCHEMYBACKEND_DROP_ALL_TABLES

setting, 38
SQLALCHEMYBACKEND_ENGINE

setting, 38
SQLALCHEMYBACKEND_ENGINE_ECHO

setting, 38
SQLALCHEMYBACKEND_MODELS

setting, 38
SQLALCHEMYBACKEND_REVISIT_INTERVAL

setting, 38
start() (frontera.core.manager.FrontierManager method),

59
state cache, 71
STATE_CACHE_SIZE

setting, 36
States (class in frontera.core.components), 23
states (frontera.core.components.Backend attribute), 21
status (CrawlPage attribute), 47
status_code (frontera.core.models.Response attribute), 15
stop() (frontera.core.manager.FrontierManager method),

60
STORE_CONTENT

setting, 37
strategy worker, 71
strategy_worker() (fron-

tera.core.components.DistributedBackend
class method), 22

T
teardown_backend() (tests.backends.BackendTest

method), 65
TEST_MODE

setting, 37
test_mode (frontera.core.manager.FrontierManager at-

tribute), 59
TLDEXTRACT_DOMAIN_INFO

setting, 37

U
update_cache() (frontera.core.components.States

method), 23
url (CrawlPage attribute), 47
url (frontera.core.models.Request attribute), 14
url (frontera.core.models.Response attribute), 15
URL_FINGERPRINT_FUNCTION

setting, 37
UrlFingerprintMiddleware (class in fron-

tera.contrib.middlewares.fingerprint), 18

Z
ZMQ_ADDRESS

setting, 40
ZMQ_BASE_PORT

setting, 40

Index 79

	Introduction
	Frontera at a glance
	Run modes
	Quick start single process
	Quick start distributed mode
	Cluster setup guide

	Using Frontera
	Installation Guide
	Frontier objects
	Middlewares
	Canonical URL Solver
	Backends
	Message bus
	Crawling strategy
	Using the Frontier with Scrapy
	Settings

	Advanced usage
	What is a Crawl Frontier?
	Graph Manager
	Recording a Scrapy crawl
	Fine tuning of Frontera cluster
	DNS Service

	Developer documentation
	Architecture overview
	Frontera API
	Using the Frontier with Requests
	Examples
	Tests
	Logging
	Testing a Frontier
	F.A.Q.
	Contribution guidelines
	Glossary

	Python Module Index

